
Tun SQL – Data Access

Tun Plus 2009
Issued May 2008

Copyright © 1989-2008 Esker S.A. All rights reserved.
© 1998-2002 The OpenSSL Project; © 1994-2003 Sun Microsystems, Inc.; © 1996 Wolfgang Platzer (wplatzer@iaik.tu-
graz.ac.at); © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved. Tun contains components which are derived
in part from OpenSSH software. See the copyright.txt file on the Tun CD for additional copyright notices, conditions of use
and disclaimers. Use and duplicate only in accordance with the terms of the Software License Agreement - Tun Products.

North and South American distributions of this manual are printed in the U.S.A. All other distributions are printed in France.
Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted
in any form or by any means without the prior written consent of Esker S.A..

Esker S.A., 10 rue des Émeraudes, 69006 Lyon, France
Tel: +33 (0)4.72.83.46.46 ♦ Fax: +33 (0)4.72.83.46.40 ♦ info@esker.fr ♦ www.esker.fr

Esker, Inc., 1212 Deming Way, Suite 350, Madison, WI 53717 USA
Tel: +1.608.828.6000 ♦ Fax: +1.608.828.6001 ♦ info@esker.com ♦ www.esker.com

Esker Australia Pty Ltd. (Lane Cove - NSW) ♦ Tel: +61 (0)2 8596 5100 ♦ info@esker.com.au ♦ www.esker.com.au

Esker GmbH (München) ♦ Tel: +49 (0) 89 700 887 0 ♦ info@esker.de ♦ www.esker.de
Esker Italia SRL (Milano) ♦ Tel: +39 02 57 77 39 1 ♦ info@esker.it ♦ www.esker.it
Esker Ibérica, S.L. (Madrid) ♦ Tel: +34 91 552 9265 ♦ info@esker.es ♦ www.esker.es
Esker UK Ltd. (Derby) ♦ Tel: +44 1332 54 8181 ♦ info@esker.co.uk ♦ www.esker.co.uk

Esker, the Esker logo, Esker Pro, Extending the Reach of Information, Tun, and Tun Emul are trademarks, registered trade-
marks or service marks of Esker S.A. in the U.S., France and other countries.

The following are trademarks of their respective owners in the United States and other countries: Microsoft, Windows, Back-
Office, MS-DOS, XENIX are registered trademarks of Microsoft Corp. Netscape and Netscape Navigator are registered trade-
marks of Netscape Communications Corp. IBM, AS/400, and AIX are registered trademarks of IBM Corp. SCO is a registered
trademark of Caldera International, Inc. NetWare is a registered trademark of Novell, Inc. Sun, Sun Microsystems and Java are
trademarks of Sun Microsystems, Inc. Oracle is a registered trademark of Oracle Corp. Informix is a registered trademark of
Informix Software Inc. Sybase is a registered trademark of Sybase, Inc. Progress is a registered trademark of Progress Soft-
ware Corp. All other trademarks mentioned are the property of their respective owners.

PREFACE
Tun SQL - Data Access is an applications and server suite that enables
PCs to work in client/server mode with remote databases (Informix,
Oracle, Sybase, DB2, Progress and C-ISAM). Tun SQL uses the
ODBC architecture defined by Microsoft.

Tun SQL runs on the following platforms: Windows 3.x, Windows 95,
Windows 98, Windows NT 3.51 and Windows NT 4.0, Windows 2000,
Citrix WinFrame, Citrix MetaFrame and Windows NT TSE.

Tun SQL is part of the Tun software product range, as shown below:

Windows Version
(excludingCitrix/

Microsoft NT TSE)

Components in a multi-
user environment

Esker TCP/IP
Stack

TCP/IP communication
stack for Windows 3.x
(DLL)

N/A

Network
resource access

(Tun NET)

TCP/IP applications
(NIS, NFS Client and
Server, PING, Printer
redirection and sharing,
FTP Client and Server,
TELNET, RSH Client
and Server, TAR,
WALL, TFTP, TIME)

TCP/IP applications
(NIS, NFS Client and
Server, PING, Printer
redirection and sharing,
FTP Client and Server,
TELNET VT320, RSH
Client, TAR, WALL)

Applications
access

(Tun EMUL)

Terminal emulator
(asynchronous, IBM3270
and IBM5250 emulation,
3287/3812 printer)

Terminal emulator
(asynchronous, IBM3270
and IBM5250 emulation,
3287/3812 printer)

Data access
(Tun SQL)

ODBC drivers for
TCP/IP Client/Server
mode (Oracle, Informix,
Sybase, DB2, Progress
and C-ISAM DBMSs)
and database revamping
tool

ODBC drivers for
TCP/IP Client/Server
mode (Oracle, Informix,
Sybase, DB2, Progress
and C-ISAM DBMSs)
and database revamping
tool

TCP/IP
Network
Services

NIS Browser, printer
redirection and sharing

Printer redirection and
sharing

Most of the functionalities and procedures described in this manual
apply equally to Windows 3.x, Windows 95, Windows 98,
Windows NT 3.51, Windows NT 4.0, Windows 2000 or
Citrix/Windows NT TSE. However, some functionalities and
procedures apply to only one or more of these platforms. In this case,
the paragraph or section in question is indicated as follows:

Win 3.x

Windows 3.x

Win 95

Windows 95 and Windows 98

Win NT
2000

Windows NT (Windows NT 3.51 and Windows NT 4.0, including
multi-user environment if no indication) and Windows 2000

NT 4.0
2000

Windows NT 4.0, including Citrix/Windows NT TSE if no indication

NT 3.51

Windows NT 3.51, including multi-user environment

Win 32

32-bit Windows (Windows 95, Windows NT 3.51 and Windows
NT 4.0, including multi-user environment if no indication and
Windows 2000)

Multi-user environment

Excluding multi-user environment

Tun SQL for Windows is also delivered with Tun PLUS which
includes all the modules mentioned above. The Tun PLUS installation
procedure proposes to install Tun SQL.

Except for the Tun PLUS for Multi-User Windows version, you can
install Tun SQL independently of Tun PLUS.

Note:
In the entire document, Windows 95 features correspond to Windows
98 features.

TABLE OF CONTENTS

PART 1 PRESENTATION AND USE

CHAPTER 1 - Introduction to Tun SQL.. 1-9
The ODBC mechanism... 1-9
The Client/Server model... 1-11
ODBC and the SQL Client/Server model................................... 1-13
Tun SQL ... 1-13

CHAPTER 2 - Configuration and use in Windows.......................... 2-17
Verifying the functioning of Tun SQL 2-17
Creating a database... 2-21
Creating a data source... 2-21
Transferring the demonstration database 2-29
Creating a virtual data source ... 2-31
Character conversion tables.. 2-33

CHAPTER 3 - C-ISAM ... 3-37
Introduction to C-ISAM ... 3-37
Using sqltools ... 3-39

PART 2 DATABASE REVAMPING

CHAPTER 4 - Revamping ... 4-51
Virtual databases... 4-51
Revamping in Tun SQL.. 4-53

CHAPTER 5 - Tun DB Revamp general use 5-57
General options... 5-57
Importing data source environments... 5-59
Creating an environment... 5-60
Creating a virtual table.. 5-60
Creating a field ... 5-61
Assigning field filters ... 5-64
Inter-table links... 5-66
Querying real and virtual databases.. 5-68
Validating an environment ... 5-70
Exporting data source environments... 5-71
Updating a virtual data source .. 5-72
Creating a virtual data source ... 5-73
Displaying warnings ... 5-73

Local revamped data source management 5-74
Field identification.. 5-75

PART 3 APPENDICES

APPENDIX A - Reference... A-79

APPENDIX B - SQL statements used in C-ISAM........................... B-95
Principle instructions .. B-95
SQL statement syntax... B-96
Data types ... B-130

INDEX...I-137

PART 1
PRESENTATION AND USE

!!!! Introduction to Tun SQL 1 - 9

1

INTRODUCTION TO TUN SQL

The ODBC mechanism

In the world of databases, programmers traditionally use a mechanism
called "Embedded SQL" to provide an interface between their
applications and a specific database. Embedded SQL lets you insert
SQL requests into programs written in COBOL or C. It has the
advantage of making applications more widely portable on different
machines.

Embedded SQL, however, has several disadvantages:

• There are as many Embedded SQLs as there are DBMS engines on
the market. Applications using SQL can only interface with one
DBMS at a time. They must be rewritten or at least modified if
they're to interface with other databases. For applications that need
to interface with all the databases on the market, it's inconceivable
to use the Embedded SQL mechanism.

• Embedded SQL is relatively undeveloped, quite restrictive and
difficult to use. It doesn't let databases be used to full advantage,
and it's sometimes preferable to use the API provided by the DBMS
directly.

1 - 10 Data Access !!!!

To compensate for the disadvantages of Embedded SQL, Microsoft
conceived a new approach based on the ODBC mechanism (Open
Database Connectivity). ODBC is a further development of WOSA
(Windows Open System Architecture).

ODBC.DLL

ODBC.LIB ODBC.LIB ODBC.LIB

Application 1 Application 2 Application 3

DRIVER1.DLL DRIVER2.DLL DRIVER3.DLL

DBMS 1 DBMS 2 DBMS 3

ODBC is a well-defined set of C functions that makes it possible to
retrieve data from, or update data in, a DBMS. These functions have
been assembled in a DLL (Dynamic Link Library) that can be used by
any Windows application. The functions of the ODBC DLL
(ODBC.DLL) analyze SQL requests. They then pass them to ODBC
drivers whose job it is to convert the calls to suit the particular API of
the DBMS you're using. An ODBC driver lets you view the DBMS
interface. You can then enable your application to use it just like any
other ODBC-compliant DBMS.

Microsoft supplies the ODBC.DLL library and all the tools required to
use it. They don't, however, supply ODBC drivers for all the DBMSs
on the market. Microsoft is happy supplying drivers for its proprietary
storage systems (Excel, Word, Access...).

ODBC drivers for specific databases are supplied directly by the DBMS
publisher or by third parties who specialize in this domain (Esker).

!!!! Introduction to Tun SQL 1 - 11

Finally, ODBC provides maximum interoperability. A simple Windows
application can access different management systems even if it wasn't
specifically designed to do so. ODBC lets developers program, compile
and deliver programs without having to worry about the DBMS the
program will be used with. The users only have to provide the right
driver so the application on which they're working cooperates with their
DBMS.

ODBC is a valuable mechanism for multi-domain applications such as
spreadsheets, word processing applications, and development tools that
manipulate information from DBMSs without knowing a priori which
DBMS is being used.

The Client/Server model

For some years, the term Client/Server has been on the lips of everyone
in the computing industry. In its widest sense, the Client/Server model
is a computing model in which at least two units cooperate to supply a
particular service.

The "Gartner Group" has identified six principal types of Client/Server
mode applications which they've classified according to the number of
functions performed by the client or the server.

DataData
ManagementManagement

DataData
ManagementManagement

DataData
ManagementManagement

DataData
ManagementManagement

DataData
ManagementManagement

DataData
ManagementManagement

DataData
ProcessingProcessing

DataData
ProcessingProcessing

DataData
ProcessingProcessing

DataData
ProcessingProcessing

PresentationPresentation

PresentationPresentationPresentationPresentationPresentationPresentationPresentationPresentationPresentationPresentation PresentationPresentation

DataData
ProcessingProcessing

DataData
ProcessingProcessing

DataData
ProcessingProcessing

DataData
ProcessingProcessing

DataData
ManagementManagement

DataData
ManagementManagement

1 2 3 4 5 6

REVAMPING X WINDOW NFS
DISTRIBUTED

DATABASE

S
E
R
V
E
R

C
L
I
E
N
T

1 - 12 Data Access !!!!

The applications that make the least demands on the "client" are
"revamping" applications or X-WINDOWS servers. The applications
that make the most demands on the "client" are those that use
distributed databases.

When the computing industry speaks about the Client/Server model, it
often means applications concerned with distributed databases.

The most common illustration of this mode is shown in the following
schematic:

Erreur! Des objets ne peuvent pas être créés à partir des codes de
champs de mise en forme.

A "client" PC has a conventional management system that works in
graphic mode. The data is stored centrally on an UNIX server and
managed by a Relational Database Management System (RDBMS). To
retrieve or update data, the client sends an SQL request to the server.
The server executes the request and returns the reply to the client over
the network.

The principal advantages of this architecture are the following:

• The end-user has a graphic, user-friendly Man/Machine interface on
his Windows PC.

• The PC can be used for tasks other than normal applications (office
applications, calculations, personal applications...).

• From his machine, the user can access centralized data on a server at
the same time as other users.

• The server is relieved of applications tasks and all its power can be
concentrated on serving data. There is a balanced distribution of the
workload between the client and the server.

• The network is only used to send essential application data: It isn't
overloaded with presentation information.

SQL Client/Server mode as described above is a modernized version of
the transactional mode as is still encountered in a Mainframe-
synchronous terminal environment.

!!!! Introduction to Tun SQL 1 - 13

ODBC and the SQL Client/Server model

As well as facilitating access to all data management systems, ODBC
can also be used on a remote database. In this context, ODBC enables a
Windows application to use any sort of DBMS. It also enables multi-
domain applications such as "Excel", "Word" or "Access" to use the
company's centralized information. In a Client/Server context, the
ODBC mechanism lets you increase the number of applications which
can use the company's data.

The implementation of this type of architecture at the present time is no
simple matter. Users who already have a local PC network, a UNIX
server and a DBMS must also acquire the following components to
implement an SQL Client/Server architecture with ODBC:

• The network server part of the DBMS (Informix Net, Sql Net...).
• The PC client part of the DBMS (Informix Net PC, Sql Net PC...).
• The appropriate ODBC driver.
• A Winsock-compatible TCP/IP stack for the PC.

DBMS software houses always supply the first two components. This
isn't always the case with the ODBC driver and is never the case for the
TCP/IP stack. The last two components must be obtained elsewhere,
with particular attention being paid to the question of compatibility.

Tun SQL

Tun SQL was designed to supply a definitive solution to the above
problem. It integrates all the components mentioned above, as well as
powerful database revamping functionality and a virtual ODBC driver
for access to the revamped databases, into one homogenous software
package. Even the network components of the DBMS (client and
server) are included in Tun SQL. This represents a considerable saving
when it comes to equipping a large PC installation. It especially makes
things very simple when it comes to implementing SQL Client/Server
architecture.

1 - 14 Data Access !!!!

ODBC Manager
(ODBC.DLL)

ODBC Driver
(Tun SQL)

DB Revamp
(revamping
Tun SQL)

TCP/IP
(Tun SQL)

Windows
Appli

UNIX Server PC Client under Windows

TCP/IP Network

TCP/IP
(UNIX)

DBMS
(Oracle, Informix,...)

DBMS Network Server
(Tun SQL)

Windows
Appli

ODBC Driver
(Tun SQL)

" A single ODBC driver for most of the DBMSs on the
market

To limit the number of software products required for the PC client,
Tun SQL features a single ODBC driver to access the following
DBMSs indifferently:

• Oracle version 7.
• Informix versions 5 and 7.
• Sybase version 10.
• DB2 version 2.
• Progress versions 6, 7 and 8
• C-ISAM files (versions 4 through 7).

" Database revamping

Tun SQL, with the help of an integrated user-friendly application, lets
you redefine the tables in a database and make them more accessible to
the end-user (through customized table reorganization, modification of
table and field names, and preset functions).

" A virtual ODBC driver for revamped databases

To use a database that's been revamped (redefined), Tun SQL includes
a virtual ODBC driver which translates requests made to virtual tables
into requests that a normal ODBC driver can handle.

!!!! Introduction to Tun SQL 1 - 15

" The server part of the DBMS is included in Tun SQL

The server part of each of the DBMSs is installed on the UNIX or NT
machine and is supplied as standard with Tun SQL for the following
operating systems:

• ScoUnix 3.2x v.4.2 and 5.0
• SunOs 4.1.3
• Solaris 2.5
• AIX 3.2 and 4.1
• HP-UX 9.x and 10.x
• OSF1 v.3.2
• Windows NT
• IBM MVS

This feature saves Tun SQL users the cost of the server side of their
DBMSs.

" TCP/IP stack delivered as standard (16-bit Windows)

Win 3.x

Like all the software in the Tun range, Tun SQL is delivered with
Esker TCP/IP Stack as standard. The stack has an excellent
performance record and has been tested with all of Tun SQL's
components. The inclusion of the stack in the Tun SQL package saves
you the trouble of having to obtain a stack elsewhere.

" Simple installation and administration

The objective of Tun SQL is to facilitate the implementation of a
Client/Server architecture based on Windows and UNIX. Consequently,
Tun SQL has a simple installation procedure for UNIX and Windows
and comes with complete documentation.

In addition to the ODBC driver, two Windows applications are supplied
for testing and implementing the Client/Server architecture:

• Tun DB Show tests the Client/Server connection from end to end.
The application can query the UNIX server to find out which
DBMSs are installed: It can also query some DBMSs to find out
which databases they manage.

• Tun DB Script executes SQL batch files on the Windows machine
to create databases on the remote DBMS.

1 - 16 Data Access !!!!

In addition to the security offered by UNIX and the different DBMSs,
Tun SQL includes a feature that denies certain Windows applications
access to sensitive databases.

Lastly, the integration of the NIS (Network Information Service) into
Tun SQL permits the centralized management of network resources
and facilitates access to remote resources. For more information on the
NIS, please consult the TCP/IP Network Services user guide or the
Tun NET user guide.

" Tun SQL driver conformity

The Tun SQL driver supports all the level 1 functions and some of the
level 2 functions. The "Microsoft ODBC Cursor Library" is supplied
with the driver. Although this library only supports static and "forward
only" cursors, this is sufficient for many applications.

!!!! Configuration and use in Windows 2 - 17

2

CONFIGURATION AND USE IN
WINDOWS

Verifying the functioning of Tun SQL

" Executing Tun DB Show

When you've installed and configured Tun SQL on both the Windows
and UNIX machines, you must check everything's running correctly.
You can do this by running Tun DB Show.

Run the program by clicking the Tun DB Show icon in the Data
Access group (menu Start, Programs, Esker Tun under Windows
95/98/2000 and Windows NT).

The following window appears:

2 - 18 Data Access !!!!

You use this utility to query a host on the network to see if one or more
Tun SQL servers are present. Enter the name or IP address of the
server in the Host Name field or select the server you want from the
drop-down list (the list shows the servers declared in the hosts file, and
on the NIS server).

To configure Tun NIS, please refer to the manual TCP/IP Network
Services or Tun NET.

Click the Find Servers button.

If one or more Tun SQL servers are correctly installed on the remote
machine, the Installed Servers list appears as follows (there's at least
one line):

Each line contains the following information:

• The name of the DBMS that the Tun SQL server interfaces with.
• The version number of the DBMS.
• The name of the executable file that functions as the server

(tunodbc200.ora, for example).

Note:
With some DBMSs (Informix On-Line, for example), selecting the
server in the list displays the list of databases managed by the DBMS in
the appropriate column (Databases).

!!!! Configuration and use in Windows 2 - 19

If there are no Tun SQL servers in the list, it means that a problem
occurred during installation. In this case, you must carry out all the
operations and checks described in the previous chapters again.

" Parameters

Use the Options menu in Tun DB Show to:

• Manage services.
• Enter the proxy server settings.

Managing services

A service number from 5370 is associated with each Tun SQL server
process. For Tun SQL to function correctly, you must define the First
Service and set the number of services possible. This enables Tun SQL
to detect the different database systems accessible to a Tun SQL
server. The default First Service is 5370 and the Service Count default
is 5. The list of available services is given below:

• Oracle 5370
• Informix 5371
• Sybase 5372
• DB2/RS6000 5373
• Progress 6 5374
• Progress 7 5375
• C-ISAM 5376
• DB2 for MVS 5377
• Progress 8 5378

Choose Options####Parameters... from the main menu. The following
dialog box opens:

2 - 20 Data Access !!!!

Using a proxy server firewall

When you configure a proxy server in Tun DBRevamp, access to an
outside server goes through a proxy gateway machine.

To set the firewall parameters (IP address, port number, etc.), choose
Options####Firewall from the main menu.

The following dialog box opens:

Select the Use a Proxy server check box.

Enter the name or IP address of the server. Only enter a name if you use
a DNS. You can also choose one from the drop-down list (click the
down arrow to the right of the field). The list contains the names of the
servers listed in the server table (hosttab) and on the NIS server (NIS
resources have yellow icons).

Also enter the SOCKS port number (usually the default value 1080).

To avoid using the firewall for local connections, select Do not use for
local addresses.

The firewall configuration can be applied to all the Tun applications:
To do that, select the Use these settings for all Tun applications check
box. To apply the general configuration to all the Tun applications in
use (after using a specific Tun DBShow configuration, for example),
click Restore general settings.

!!!! Configuration and use in Windows 2 - 21

Creating a database

To familiarize users with ODBC functionality in a client/server
environment, Tun SQL is supplied with practical examples.

To use the examples supplied with the Tun SQL software package, a
specific database must be created in one of the available DBMSs. You
do this using the tools that come with the DBMS in question.

Given the difficulty inherent in creating a database in some DBMSs
(Oracle), you can use an existing database provided that it doesn't
contain sensitive data. The newly created database should be called
tunsqldemo for a better understanding of the next part of the manual.

Creating a data source

" Introduction to data sources

ODBC-compliant applications have to recognize a data source before
they can use a particular driver and database. Data source is a key term
which refers to the name of the ODBC driver used (for example,
tunodb32.dll) and the information required to make it function. This
information is as follows:

• The name or IP address of the remote host.
• The type of DBMS (Oracle, Informix, Sybase, DB2, Progress, C-

ISAM).
• The name of the database.
• Comments.
• Optional supplementary information.

" Creating a data source

To familiarize users with ODBC functionality in a client/server
environment, Tun SQL is supplied with practical examples. The
examples use the same data source (except the examples concerning
database revamping).

2 - 22 Data Access !!!!

You must create this data source before you can use the examples (see
the manual "Getting started with Tun").

To create a data source, you can use:

• Tun DB Show.
• ODBC DataSource Administrator (Windows utility).

Creating a data source with Tun DB Show

Start Tun DB Show again and do the following:

• Enter the name or IP address of the server with the database for
which you want to create a data source.

• Click Find Servers to display the Tun SQL servers installed on the
host.

• Select the server for the DBMS with the database for which you
want to create a data source.

• Click Add....

If Tun NIS is installed on the PC and the network administrator has
configured the NIS tables, you can use the Add from NIS... button to
access the data sources on the network. See the TCP/IP Network
Services or Tun NET user guide for instructions on how to configure
Tun NIS.

Now please read the section "Configuring the data source".

Creating a data source with ODBC Administrator

Open the Control Panel and click the ODBC icon (32-bit ODBC in
Windows 95). Click the Add button in the dialog box that opens.

Select the ODBC driver Tun32 Driver.

!!!! Configuration and use in Windows 2 - 23

Configuring the data source

Click the Add button in Tun DB Show or the ODBC Administrator
to display the following dialog box:

" General tab

The first tab contains the following fields:

Data Source Name

The icon represents the field containing the name of the data source
as used by ODBC-compliant applications. For you to be able to connect
to the sample database, it's imperative that the data source is called:

• TunSqlDemoIfx For Informix On-Line
• TunSqlDemoIse For Informix SE
• TunSqlDemoOra For Oracle
• TunSqlDemoSyb For Sybase
• TunSqlDemoDB2 For DB2
• TunSqlDemoPro For Progress

2 - 24 Data Access !!!!

Description

Enter an optional comment to associate with the data source.

Host Name

Enter the IP address or the name of the host on which the database you
want to use is installed.

Service Name

Enter the name of the Tun SQL server process associated with the
DBMS in which the required database has been created (for example,
tunodbc200.ora).

If you're using a different TCP/IP stack from TCP/IP Stack, you
should complete the services file in the TCP/IP software used with the
following values:

tunodbc200.ora 5370/tcp # Tun-SQL ORACLE
tunodbc200.ifx 5371/tcp # Tun-SQL INFORMIX
tunodbc200.syb 5372/tcp # Tun-SQL SYBASE
tunodbc200.db2 5373/tcp # Tun-SQL DB2
tunodbc200.pro 5374/tcp # Tun-SQL PROGRESS

The other services are given below (not used in the example):

tunodbc200.pro7 5375/tcp # Tun-SQL PROGRESS7
tunodbc200.ism 5376/tcp # Tun-SQL C-ISAM
tunodbc200.mvs 5377/tcp # Tun-SQL DB2/MVS
tunodbc200.pro8 5378/tcp # Tun-SQL PROGRESS8

Database

Enter the name of the database you want to use. To use the sample
database, enter tunsqldemo (the sample database supplied with Tun
SQL).

User Name

Enter the name of a user authorized to access the database.

Password

Enter the password associated with the user.

!!!! Configuration and use in Windows 2 - 25

" Driver tab

Click the Driver tab to display the ODBC driver configuration window:

Keep Alive Timeout

Since the PC is liable to software and hardware failures, the Tun SQL
server has to regularly check that the PC is still under power. To do
this, it regularly sends packets to the PC. If the PC doesn't reply in a
time of n seconds, the process stops. Enter the timeout value (the
default is 1 hour).

Row Cache Size

Indicates the size of the data packets extracted from a table during an
SQL "select" operation. The value can be expressed in kilobytes or
number of lines.

If the value equals 1, then one TCP packet per row is retrieved. If the
value equals 100 then the rows are grouped in packets of 100 up to the
number of rows actually retrieved. This field lets you optimize
exchanges on the network. The optimum value is between 50 and 150.
The default value is 32 Kb.

2 - 26 Data Access !!!!

Column Block Size

Indicates the fragmentation unit to be used when very wide columns
have to be retrieved from the database (large amounts of text or
images). If this value is too low, the number of exchanges on the
network are considerably increased.

Supported version

Currently, there are two versions of the ODBC API, numbered 1.00 and
2.00. Some applications are only compatible with ODBC version 1.00
(Microsoft Access) and don't work with drivers from a higher version.
The Tun SQL ODBC driver, which is compatible with version 2.00,
can emulate version 1.00 to allow these applications to run.

Select the appropriate check box to indicate to the ODBC driver the
level of compatibility required for a given application.

Translator

Due to the differences in accented character notation in the Windows
(CP850) and UNIX (ISO8859) environments, it's sometimes necessary
to set up character conversion tables for the ODBC driver. The Select...
button enables the user to choose the required conversion table. You
can ignore this field in the sample database since the text it contains is
in English.

Note:
You can use Tun DB Map to create or edit the conversion tables.

!!!! Configuration and use in Windows 2 - 27

Click the Row Limits tab to display the limits dialog box:

Row Limit Mode

Some office applications let you compose your own SQL requests. In
other cases, applications read the contents of an entire table before
displaying them on the screen. This doesn't pose any particular
problems when they're dealing with small tables in a local database.

On the other hand, insurmountable problems can arise when it's a
question of very large tables in a centralized, remote database. In this
case, there's a considerable number of exchanges on the network and
there may be insufficient memory in the PC to store the received data.
The PC needs to be frequently rebooted after such a "select" query.

To compensate for this problem, the Tun SQL ODBC driver
incorporates the notion of limits. You define the limits on the Row
Limits tab.

2 - 28 Data Access !!!!

Five types of limits are recognized by the Tun SQL ODBC driver:

No Limit No limit is imposed by the ODBC driver.

Absolute Limit The ODBC driver refuses to load more than
n rows during one select request. No messages
are displayed to inform the user.

Fixed Limit The ODBC driver refuses to load more than
n rows during one select request. A message will
be displayed informing the user.

Variable Limit The ODBC driver refuses to load more than
n rows during one select request. However, it
displays a message proposing to load more,
within the limit of the Maximum Value.

Extended
Limit

The ODBC driver refuses to load more than
n rows during one select request. However, it
displays a message proposing to load more, with
no Maximum Value. In this case, the message
displayed is really only a warning.

Trace

You can select the Trace check box to save a record of your SQL
queries in a ".log" file that you can later consult. This option lets you
see what the ODBC driver does when you pass it an SQL query.

Click the button ... to choose the directory where you want to put this
file.

NIS

If Tun NIS is installed on the PC and the network administrator has
configured the NIS tables, you can click the Import NIS... button to
access the data sources on the network. See the manual TCP/IP
Network Services (if you don't have Tun NET) for instructions on
how to configure Tun NIS, or the chapter "The NIS Browser" in the
Tun NET or TCP/IP Network Services manual

!!!! Configuration and use in Windows 2 - 29

Notes:
In this chapter you were asked to create a data source called
tunsqldemoXXX which is used by the examples supplied with Tun
SQL.
To use Tun SQL with other applications and databases, you must
create the required data source for each case. Typically, there must be
an individual data source for each application and database used.
You can create a data source directly using the Windows ODBC
application from the Control Panel.

Transferring the demonstration database

Tun SQL is delivered with a test database for use with the examples
included. This database must be downloaded from the PC to the data
source tunsqldemoXXX that you were asked to create in the preceding
sections.

Note:
The variable XXX in the name of the data source may take one of the
following values:

• Ifx For Informix On-Line
• Ise For Informix SE
• Ora For Oracle
• Syb For Sybase

To perform the downloading, run the program by clicking the Tun DB
Script icon in the Data Access group (menu Start, Programs, Esker
Tun under Windows 95/98/2000 and Windows NT).

2 - 30 Data Access !!!!

When the application starts, the following window appears:

" Loading the SQL batch file to create the database

You can load the database of your choice by choosing File➔➔➔➔ Open or

clicking the button .

To download the example database, you must load the file
\Demo\Db\XXXCREAT.SQL from the Tun SQL installation
directory.

" Connecting with the data source

Before you can run the SQL batch file, you must establish a connection

with a data source. To do this, click the button or choose
Database➔➔➔➔ Connect.

This operation displays a dialog box that asks for the name of the data
source to use. If the connection can be established, the batch file is run.

To download the example database, select the data source
TunSqlDemoXXX which was defined earlier.

!!!! Configuration and use in Windows 2 - 31

" Execution

To execute the SQL batch file, choose Database➔➔➔➔ Execute in the main

menu or click the button . Tun DB Script then submits the SQL
commands consecutively to the database which corresponds to the
selected data source. If there's an error, Tun DB Script stops running
and displays an error message.

" Disconnecting the data source

After execution, you must disconnect the data source by clicking the
button or by choosing Database➔➔➔➔ Disconnect from the main menu.
A disconnection of the data source also occurs when you quit the
application.

Note:
Although you can use Tun DB Script to download the Tun SQL
example database, it also has other uses. In fact, Tun DB Script can
execute whole lists of SQL commands to create other databases or
update or completely clear extremely large tables.

Creating a virtual data source

Tun DB Revamp can link virtual tables, adapted to the end user's
environment, to a real database. See the section "Database
Revamping" for more information on that application.

When you create a virtual (revamped) database, you can create data
sources for it, just as if it were a real database. Users can then use the
virtual ODBC driver supplied with Tun SQL to access the virtual
database you've created especially for them.
A virtual data source can be considered as the association of a real data
source and an environment.

To create a virtual data source, access the configuration of the virtual
data source in ODBC Administrator: Choose the Tunmap32 driver.
See "Creating a data source ".

2 - 32 Data Access !!!!

The following dialog box opens:

Data source

Enter the name of the revamped data source.

Description

Enter a description of the data source for identification purposes.

Real Data Source Name

Enter the name of the data source for the real database the virtual
database is derived from.

Environment

Enter the name of the environment for which you're creating a virtual
data source. An environment is the set of virtual tables: Each revamped

database can have one or more environments. Click the button to
choose the environment from the list of environments defined in the
database.

Local .DBR file

Instead of entering a real data source name, you can select the
environment from a local .dbr file. See the section "Database
Revamping" for information on the use of this type of file.

!!!! Configuration and use in Windows 2 - 33

Select the Local .DBR file check box. Enter the full path name of the

file or click the browse button to select the ".dbr" file. Then choose
the environment (Virtual source field).

Trace File

To keep a trace of your SQL queries, select the Trace File check box.
A record is saved in a log file that you can consult with a text editor.
This lets you see what the ODBC driver does when you pass an SQL
query to it.

Click the browse button to choose the directory where you want to
save the log file and also name this file.

Character conversion tables

This section can be skipped on the first reading.

" Difference in notation between the different computing
systems

Although all the characters used in English have been perfectly codified
in the ASCII table (0 to 127), this isn't the case for the special
characters or accents used by other languages (for example, French,
German, Spanish, Italian, etc). Despite the fact that norms exist (for
example, ISO 8859), they're not always implemented in every
computing system.

As Tun SQL enables a computing system (the PC) to access data
located in another computing system (a DBMS operating on the UNIX
platform), Esker has included in Tun SQL a function to handle the
differences in notation between the national characters in different
systems. This function enables the PC to display an accented character
(an é for example) even if it is coded differently in the UNIX DBMS.

" Creation of conversion tables

The conversion function supplied with Tun SQL uses "conversion
tables" that can be created or updated with the application Tun DB
Map.

2 - 34 Data Access !!!!

Run the program by clicking the Tun DB Map icon in the Data Access
group (menu Start, Programs, Esker Tun under Windows 95/98/2000
and Windows NT).

The following screen is displayed:

The table on the left shows all the characters available on the PC
(ASCII and extended ASCII). The table on the right shows the same
characters but in positions that correspond to the notation used by the
DBMS on the UNIX machine. The first 128 positions in the table on the
right are already filled since they are the same in both systems.

To assign a character to one of the positions in the right-hand table,
select a character in the left-hand table and "drag" it across to one of the
squares in the right-hand table, with the mouse button pressed.

You can create as many conversion tables as you need. Choose
File####Save from the general menu. Save the files with the extension
".ttt".

!!!! Configuration and use in Windows 2 - 35

" Implementation of conversion tables

For conversion tables to be taken into account, they have to be
associated with a data source using the dialog box displayed by Tun
DB Show to this effect. Enter the details in the Translator section:

Click Select... to display the following dialog box:

Select the ODBC translator you want to use and click OK.

!!!! C-ISAM 3 - 37

3

C-ISAM

Introduction to C-ISAM

" The C-ISAM file system

C-ISAM (Indexed Sequential Access Method) is a library of C
functions developed by Informix. It allows the management of indexed
sequential files (file creation, and insert, delete and read operations). C-
ISAM includes other features like file locking and transaction support
which ensure data integrity. These features guarantee that data is
accessible, valid and correctly used.

C-ISAM uses data types similar to those used in C. Since C-ISAM
implements these types independently of the UNIX system used, the
way it stores the data can be different than the way the data is
represented at run time. C-ISAM includes conversion functions to
convert run-time data formats to storage data formats.

A C-ISAM file is really a combination of two files: One contains data
(file.dat) and the other an index for finding the data in the data file
(file.idx). The two files are always used together as one logical C-ISAM
file.

file1.dat
file1.idx

file1

3 - 38 Data Access !!!!

" RDBMSs and C-ISAM

As C-ISAM files use indexed sequential access, developers must
understand the file structure and use the index files to access data.

Building a database system using C-ISAM files frees developers from
these constraints by incorporating an indexed file structure as tables,
columns, and indexes in a catalog.

" Tun SQL C-ISAM

C-ISAM depends on C functions to query and update sequential files.
The C-ISAM driver shipped with Tun SQL lets you view sequential
files as a standard relational database with tables, fields and keys. You
can then use standard SQL instructions to query or update a database
created with C-ISAM files. The C-ISAM driver C-ISAM translates the
instructions into C functions that perform the necessary operations on
the sequential files.

To go from a sequential data view to a relational database view, the C-
ISAM driver adds descriptive database files known as the catalog to the
standard C-ISAM data and index files. These are C-ISAM type files
(.dat data file and .idx index file): SysTables, SysColumns, SysIndexes
and SysDefaults.

file1.idx

SysTables SysColumns SysIndexes SysDefaults

Catalog files
file1.dat

sqltools is a UNIX tool for creating and managing databases built on C-
ISAM. It works on the same principle: SQL instructions are used to
construct the database and are translated into C functions before they
can be read by the C-ISAM file system.

!!!! C-ISAM 3 - 39

" Installing the C-ISAM driver

To install the Tun SQL C-ISAM, refer to the "Tun Installation
Guide".

Using sqltools

" Using sqltools

You can use sqltools on-line or from a semi-graphical interface
(windows, menus).

Connect to the UNIX server containing the C-ISAM files. We
recommend you create a user login ID to access the C-ISAM files.

Change to the sqltools installation directory and run the application by
entering the following command:

sqltools

to run the application on-line,
or
sqtools -v

to use the graphical interface

" Creating the database

The first step is to create the database containing the data from the C-
ISAM files. To do that, use one of the following methods:

• Choose Database####Create and enter the name of the database you
want to create. .

• Enter the following statement in the lower pane (Input window):

create database "databasename";

This statement creates a directory with the name of the database and the
extension .ism in the directory indicated by the variable ISAM-PATH
See "DBMS Installation Settings" in the "Tun Installation Guide"
for more information on the ISAM-PATH variable. ".

3 - 40 Data Access !!!!

Example:
Create database "demo";

creates the directory demo.ism in the directory /TunSql/bases if ISAM-
PATH=/TunSql/bases.

This directory contains the C-ISAM .dat and .idx files that describe the
database: SysTables, SysColumns, SysIndexes and SysDefaults, a total
of 4 logical C-ISAM files and 8 operating system files.

The lower window (Input window) takes the name of the database:

Note:
You can run shell commands directly from sqltools. Enter the
command preceded by an exclamation mark and followed by a semi-
colon in the lower pane (Input window).
Example:
! ls -a ;

To enter character strings in uppercase, use quotes.
Example:
!ls "/TunSql/locisam";

" Connecting to an existing database

If you're using an existing database, you can perform operations on the
tables after connection.

!!!! C-ISAM 3 - 41

To do that, choose Database####Connect and enter the name of the
database. The lower pane (Input window) takes the name of the
database you connect to.

" Creating tables

Once the database is created (the .ism directory contains the table's
descriptive files), you can then create tables in it. .

You can perform this step using a pair of existing C-ISAM files (the
.dat data file and the .idx index file), or create new ones. The statement
used in the second case is different, as are the precautions you must
take: Use the create table statement to create the pair of C-ISAM files
at the same time as the table, and the define table statement to create a
table from a pair of existing C-ISAM files.

Creating tables from scratch

To create the pair of C-ISAM files at the same time as the table, enter
the following statement in the lower pane (Input window), which now
has the database name as a title:

create table tablename (field1 type1, field2
type2,..., primary key(field1)));

This statement creates a table with the name "tablename" in the
database. The table contains the fields field1, field2, etc. with the types
type1, type2, etc. See the list of types.

The C-ISAM data and index file pair are created in the database
directory (databasename.ism). The names of these files use the first
seven characters of the table name and a unique identification number
that's attributed automatically: The extension .dat is added for the data
file and .idx for the index file. If the table name is less than seven
characters, these file names are padded out with underline characters
("_").

Example:
create table table1 (field1 longint, field2 char(25),
filler char (30), primary key(field1));

creates the files table1_100.dat and table1_100.idx. The table contains
the field field1 containing a longint type, the field field2 containing a
maximum of 25 char types, and the field filler containing a maximum of
30 char types. The primary key for this table is field1.

3 - 42 Data Access !!!!

Creating tables from an existing pair of C-ISAM files

To create a table in a database for which the C-ISAM .dat and .idx file
pair already exists, enter the following statement in the lower pane
(Input window) which has the database name as its title:

define table tablename file is filename (field1
type1, field2 type2,..., primary key(field1)));

This statement creates a table with the name "tablename" from the
existing files filename.dat and filename.idx.

Important note:
Before using the table (for example, before you use select statements on
the table), you must copy the files specified by the file is keywords into
the database directory.
The define statement, however, can be executed even if the files haven't
yet been copied to this directory. It's even recommended not to copy
the files until you execute the create index statement, if you want to
create an index for the table.

" Creating an index

To create an index for one through eight columns in a table, enter the
following statement in the lower pane (Input window), which has the
database name as a title:

create unique index indexname on tablename (field1,
field3);

This statement creates the index "indexname" for columns field1 and
field3 in the table "tablename".

" C Structures

Each statement passed to sqltools is translated into C code for the C-
ISAM file system. To view the corresponding C structure for a table,
choose Catalog####GetCStruct.

!!!! C-ISAM 3 - 43

For example, the statement that creates table1 produces the following C
structure:

struct root_table1
/* file "table1_100" */
{long lint_field1; /* field1 longint */
char chr_field2[25]; /* field2 char(25)*/
char chr_filler[30]; /* filler char(30)
*/
unsigned char null_flags[1];
/* reserved */

};

In this example, there's a reserved field (an array of unsigned chars)
one byte long. This field is specific to the C-ISAM management
system. When a table is created with the statement create table,
sqltools automatically adds this reserved field to the table.

" Validating a table created from existing C-ISAM files

When you create a table from an existing pair of C-ISAM files (with the
define statement), you must be careful that the table structure you
create conforms to that of the C-ISAM files.

For example, you create the table "table2" based on the C-ISAM files
filename.dat and filename.idx, written in C. These files have the
following record structure:

• A field composed of a longint variable,
• A field composed of an array of 25 char variables,
• A field composed of an array of 30 char variables.

If you define table "table2" as follows:

define table table2 file is table1_100 (field1
longint, field2 char(25), filler char(25));

you create a table whose records have the structure:

• A longint type field,
• Two char array fields of length 25,

3 - 44 Data Access !!!!

which doesn't correspond to the structure generated by the C-ISAM
files the table is based on.

In this case, there's a mismatch between the created table and the C-
ISAM files it's based on.

To verify that a table's data structure corresponds to the original C-
ISAM files, choose Catalog####CheckDefine. To verify all the tables in
the database, choose Tools####Check Catalog.

In our example, the Output window shows the following results:

The following message is displayed:

Table size different from file record size (55 <>
60)"

The message warns that table table2 was defined differently than the C-
ISAM "filename" files it's based on. The define statement should be as
follows:

define table table2 file is filename (field1 longint,
field2 char(25), filler char(30));

!!!! C-ISAM 3 - 45

" Viewing a table's C structure

You can view a table's C structure, that is, the different columns created
(name, data type and length), as well as the information concerning data
management (the primary keys, for example).

To do that, choose Catalog####GetCStruct and enter the name of the
table whose C structure you want to view. To view the C structure of all
the tables in the database, choose Tools####List Structures.

The example below shows the result of this command for a table
created with a primary key:

The following statement creates the table:

create table customer
(cust_number longint,
 cust_name char(20),
 cust_address1 char(20),
 cust_address2 char(20),
 filler char(20),
 primary key (cust_number)
);

The C structure generated is:

struct doc_customer /* file "custome110" */
{long lint_cust_number; /* cust_number longint */
 char chr_cust_name[20]; /* cust_name char(20) */
 char chr_cust_address1[20];/* cust_address1 char(20) */
 char chr_cust_address2[20];/* cust_address2 char(20) */
 char chr_filler[20]; /* filler char(20) */
 unsigned char null_flags[1]; /* reserved */
};

struct keydesc idx_customer_1;
idx_customer_1.k_flags = ISNODUPS;
idx_customer_1.k_nparts = 1;
idx_customer_1.k_part[0].kp_start = 0;
idx_customer_1.k_part[0].kp_leng = 4;
idx_customer_1.k_part[0].kp_type = LONGTYPE;

The first piece of code shows the structure of the table (the fields), the
second shows the primary key and its various assignments.

3 - 46 Data Access !!!!

" Catalog information

You can obtain information on the catalog using the Catalog menu.
The menu options provide information on:

• TypeInfo: Each data type is identified by a number, as defined by
the ODBC standard. Enter the number for the data type you want to
verify, or enter 0 to view the data type list.

• Tables: You can query the catalog for information on its tables,
using the name of the user who created the table, the table name
itself, or the table type (system table, synonym, etc.). Enter the %
character to include all the tables or table types in your query.

• Columns: You can query the catalog for information on its
columns, using the name of the user who created the table, the table
name itself, or the column name. Enter the % character to include all
the tables or columns in your query.

• Statistics: You can obtain statistics on the data in the catalog.
• PrimaryKeys: You can query the catalog for a table's primary keys,

using the name of the user who created the table or the table name
itself. Enter the % character to include all the tables in your query.

For more information on the Catalog menu options, refer to the catalog
system section in the ODBC standard reference manual.

" Editing a table

The length of records in a table is set when the table's created.
Consequently, you can't add or delete records if the total length is
affected.

If you want to change the structure of a table, you must first delete the
table respecting the precautions described in "Deleting a table".

" Deleting a table

There are two ways to delete a table from the catalog:

You created the table using the statement create table: Use the
statement drop table to delete it. Note: This statement removes all
references to the table from the catalog files and deletes the pair of C-
ISAM files linked with the table.

!!!! C-ISAM 3 - 47

You defined the table using the statement define table: Use the
statement undefine table to cancel the define statement. This statement
only removes all references to the table from the catalog files.

Note:
You can use the drop table statement for a table defined by define
table. However, the drop table statement deletes the pair of C-ISAM
files specified by the file is keywords if they're in the database
directory. You should, therefore, be careful using the drop table
statement if you created the table from existing C-ISAM files.

If you want to keep the pair of C-ISAM files associated with a table you
delete using the drop table statement, you must first copy these files to
a different directory. That way, after deleting the table, you can use
these backup copies.

" Maintaining the C-ISAM files

When you create tables from existing C-ISAM files (using the define
table), you must copy these files into the database directory if you want
to use the tables.

However, if these files are used and updated in other applications, it's
useful to be able to use the updates in your C-ISAM database. To do
that, you must create symbolic links with the existing C-ISAM files
from the database, rather than make copies.

Example:
You create the database dbtest in the directory /TunSql. For the tables
in this database, you use the files filename.dat and filename.idx, which
are in the directory /data and are used by other applications.

You create symbolic links to these files in the directory
/TunSql/dbtest.ism (the database directory) with the following
command:

ln -s /data/filename.* /TunSql/dbtest.ism

3 - 48 Data Access !!!!

" Deleting a database

To remove (delete) a database, choose Database####Drop and enter the
name of the database to remove, or enter the following command in the
lower pane (Input window):

drop database databasename

" Saving results

You can save the results displayed in the upper pane (Output window)
to a text file with the extension .res.

To do that, choose File####Save as... and select the location and the save
file name.

" Running a script

You can use the File####Execute option to execute an SQL script on
condition that you use the SQL statements supported by sqltools.

PART 2
DATABASE REVAMPING

!!!! Revamping 4 - 51

4

REVAMPING

Virtual databases

Most of today's structured data storage facilities consist of Relational
Database Management Systems (RDBMS). Databases make it possible
to store the corporation's data resources which can then be updated
using special applications. The mass of data assembled in this way is
also of interest to a large number of users who need to extract
information for their work (performance indicators, statistics, expert
systems). The SQL language is used to update and query databases.

However, database structure, an essential part of the information
system, can complicate access to database information throughout the
corporation:

• There's a considerable number of tables and records in databases,
too many in fact for the average end-user who is often only
interested in a part of the data.

• Database structure is always complex and the user needs a lot of
experience to find his way around.

• The computing environment of databases isn't very user-friendly.
For example, the names of the tables and records are seldom
expressed in straightforward terms.

• Data manipulation requires prior knowledge of the SQL language to
query databases and obtain the desired results.

Several breakthroughs have been made which reduce these obstacles
and facilitate access to databases (for example, the inclusion of
graphical interfaces in database query tools).

The next step is to free the end-user totally from the pre-requisite of
technical database knowledge by presenting him only the information
he needs in the most suitable form for his work environment.

4 - 52 Data Access !!!!

The consequences of this are:

• Improved productivity: The end-user becomes autonomous in his
use of data, and analysis and decision-making take less time because
they're more simple.

• More relevant information: Using only the data he needs, the user
sharpens his capacity for analysis and synthesis, and refines the
results.

" Revamping

Revamping consists of constructing a virtual database that's adapted to
the user's environment from the existing database. Although it doesn't
exist as a real database, the new structure is seen by the user as a
normal database whose tables and fields correspond exactly to his
needs: The database only contains the information the user really needs
for his analyses, in a form which suits his requirements (understandable
data names, predefined functions).

The redefined database is perfected by an administrator who adapts the
tables and fields from real databases. For example:

Real database

Revamped database

cust_no
coun
name
phone
fax
sales

Cust_tab

sale_no
cust_no
prod_no
date
total

Sales_tab

prod_no
label
line
facto

Prod_tab

Product
Line
Factory
Country
Sales

Sales

!!!! Revamping 4 - 53

In the above example, the real database contains three tables:
"Cust_tab" (customer table), "Sales_tab" (sales table) and "Prod_tab"
(product table).

The administrator defines a virtual table that presents the results of sales
per product, per product line, per production site and per country.

The virtual table entitled "Sales" contains the following fields:

• Product (real field: "prod_tab.label»)
• Line (real field: "prod_tab.line")
• Factory (real field: "prod_tab.fact")
• Country (real field: "cust_tab.coun")
• Sales (real field: "sales_tab.total")

The virtual table constructs a join between the "Prod_tab" and
"Sales_tab" tables using the common field "prod_no", and a join
between the "Sales_tab" and "Cust_tab" tables using the common field
"cust_no".

Revamping in Tun SQL

Tun SQL uses two components to administrate and use virtual
databases:

• The database administrator Tun DB Revamp which manages the
revamping.

• The virtual ODBC driver which allows the user to access the
revamped database.

" The DB Revamp administrator

The objective of the Tun SQL virtual database is to offer the end-user
contextually redefined information for a particular "environment".

With the intuitive graphic interface, the administrator can define as
many "environments" for different users or types of user as he wants.
The environment is based on "occupation": An accountant need only
see the tables related to accountancy, sales staff the tables related to
their jobs.

4 - 54 Data Access !!!!

Each environment can be viewed as a special data source by the ODBC
front-end which makes the query (refer to the architecture diagram in
the section "Virtual ODBC driver").

The virtual database model is as follows:

• One or more environments, defined from a real data source, which
contain a selection of tables from the real database. The selection
depends on the end-user's needs.

• The tables defined in an environment are either native tables from
the real database or the result of joins between two or more tables
(concept of view).

• Each table only contains the fields required by the end-user.
• The revamped fields are either existing fields from real tables or

recalculated fields that simplify the end use of the database.
• The revamped tables and fields can be given names that are clearer

for the end-user (for example, "Cust_tab" can be renamed
"Customer Table" and "Cust_no" "Client Number").

Data
source

Environment

Revamped
table

Revamped
field

Revamped
table

Revamped
table

Revamped
field

Revamped
field Revamped

field
Revamped

field

The tables redefined in an environment don't physically exist in the
database. However, the revamped database is stored in an indexed form
in three supplementary tables created in the real database:

• An environment table containing a list of environments in the form
"environment name" and "description".

• A table containing a list of redefined tables. Each of the redefined
tables is indexed by a name, a description and the name of the
environment to which it belongs.

!!!! Revamping 4 - 55

• A table of redefined fields. Each of the redefined fields is indexed
by a name, a description, an origin (existing field, processed data,
data concatenation) and the name of the virtual table to which it
belongs.

After a revamping operation, a database always contains these three
extra tables.

" Virtual ODBC Driver

For the end-user, querying a virtual database is similar to querying a
real database in read-only mode. This openness is due to the inclusion
of a special virtual database ODBC driver in Tun SQL.

When the ODBC manager (ODBC.DLL) receives queries from an
environment, it transmits them to the virtual ODBC driver. The virtual
ODBC driver then translates them into appropriate queries for the real
database. Next, the virtual ODBC driver passes the translated queries
back to the ODBC manager which directs them to the real database's
normal ODBC driver.

Database Database Database

Application
(MS Query type

of front end)

Virtual ODBC
Driver

DBRevamp
(Revamping)

Revamped
database

ODBC Manager
(ODBC.DLL)

ODBC Manager
(ODBC.DLL)

ODBC Driver
(Tun SQL)

ODBC Driver
(Tun SQL)

ODBC Driver
(other)

!!!! Tun DB Revamp general use 5 - 57

5

TUN DB REVAMP GENERAL USE

General options

" Choosing the working language

To choose the interface language, choose ?➔➔➔➔ Language" and select the
language you want to work in.

" Modifying the display

To modify the controls displayed in the main Tun DB Revamp
window:

• Select or cancel the View➔➔➔➔ Toolbar option to display or hide the
toolbar.

• Select or cancel the View➔➔➔➔ Status Bar option to display or hide the
status bar.

• Select or cancel the View➔➔➔➔ Property Box option to display or hide
the object properties bar.

" Copying an object

Use one of the following methods to copy an object:

1. To use the "drag and drop" method, select the object to be copied,
and drag it to the place you want to copy it to, with the mouse
button held down.

2. Choose Edit➔➔➔➔ Copy from the main menu to copy the selected
object, and then Edit➔➔➔➔ Paste to paste it in the desired location.

3. Choose Copy and Paste from the context menu (displayed by
clicking the right mouse button) to copy the selected and object and
paste it in the desired location.

5 - 58 Data Access !!!!

4. Use the keyboard keys Ctrl-C (copy) and Ctrl-V (paste) to perform
the operation.

5. Use the toolbar buttons, (copy) and (paste).

" Deleting an object

To delete an object, select it by clicking it and then do one of the
following:

1. Choose Edit➔➔➔➔ Delete from the main menu.
2. Choose Delete from the context menu.
3. Use one of the keyboard's Del keys.
4. Click the button in the toolbar.

" Renaming an object

To rename an object, first select it and then use one of the following
methods:

1. Use the General tab in the property box.
2. Use the F2 function-key on the keyboard and replace the old name

with the new one.
3. Click the object again and proceed as for method 2.

" Saving changes

To save changes made to property values, press Enter with the cursor
situated in the relevant dialog box, or click Apply.

" Obtaining help

To access the on-line help or obtain more information about Tun DB
Revamp, choose ?➔➔➔➔ About DBRevamp, or use the toolbar button .

" Quitting Tun DB Revamp

To quit the application, choose File➔➔➔➔ Exit.

!!!! Tun DB Revamp general use 5 - 59

Importing data source environments

To redefine (revamp) a real database, you have to select a
corresponding data source. You do this by choosing File➔➔➔➔ Import... or

else by clicking the button in the toolbar.

The following dialog box opens:

It shows a list of the data sources declared on the PC. To create a data
source, see "Creating a data source". Since virtual data sources,
obtained by revamping a real database, can't be redefined, they don't
appear in this list. They do, however, appear in the list of data sources
made available to the end-user in any Windows application that uses
them (for example, Microsoft Query).

Select the data source you want to use.

A Tun DB Revamp window similar to the following appears:

5 - 60 Data Access !!!!

The real database tables appear in the left pane of the window.

If the database in question hasn't been revamped with Tun DB
Revamp, the right pane contains an empty environment named "New
Environment". This is the first environment you can configure.

On the other hand, if you've already revamped the database with Tun
DB Revamp, (in which case, it's a question of updating the virtual
database), the right pane contains a list of the environments already
created and their contents.

Creating an environment

To define a new environment for the selected data source, select the
environment root (called "Environments") and choose Insert➔➔➔➔ New
Environment from the main menu. You can also click the toolbar

button ..

Enter a name and, optionally, a description for this environment.

Creating a virtual table

To create a virtual table in an environment, select the environment and
do the following:

• Choose Insert➔➔➔➔ New Table from the main menu or choose New
Table from the environment's context menu. You can also click the

toolbar button .
• Choose View####Property Box to display the property box of the

newly created table (if it's not already displayed).
• On the General tab in the Property Box, enter a name and optional

description for the table. You can also use the F2 function-key to
rename a selected table.

!!!! Tun DB Revamp general use 5 - 61

If you want the virtual table to contain all or part of a real table, you can
copy the real table into the environment of your choice: All the fields in
the real table are also copied. To do this:

• Use one of the methods described in the introduction (drag 'n drop,
Copy/Paste, keyboard shortcut or toolbar button) to select the real
table in the source database and copy it to the target environment.

• Delete the fields you don't require from the virtual database or
change them as described in the section "Creating a field".

• If you want to, you can change the names of the objects copied
(tables and fields), and add a description to them on the
corresponding General tab.

Creating a field

In a virtual table, you can:

• Insert an existing field from a real database, without changing its
definition.

• Create a new virtual field from the real database fields.

" Existing fields

You can copy an existing field from a table in the real database directly
into the virtual table. To do this:

• Use one of the methods described in the introduction (drag 'n drop,
Copy/Paste, keyboard accelerator or toolbar button) to select the
field in the real database table and copy it to the virtual table of the
redefined database.

• If you want, you can change the name of the field and give it a
description on the corresponding General tab (or else use the F2
function-key).

5 - 62 Data Access !!!!

" New field

To define a new field in a virtual table, select the virtual table and do
the following:

• Choose Insert➔➔➔➔ New Field from the main menu or choose New
Field from the table's context menu. You can also click the toolbar

button .
• Choose View####Property Box to display the property box of the

newly created field (if it's not already displayed).
• Enter a name and, optionally, a description on the General tab.

Click the Origin tab. You can then:

• Add a function to the field: Select the function from the
Function list box. The available functions are: Sum, Min, Max,
Number, Average, and None.

• Add a value from an existing field in a real database to the new
field or the function selected above: Select the real table and
field you want from the two Field list boxes.

• Add an operation to the field selected above: Choose the
operator you want from the Operation list box. The available
operations are: +, -, *, /, and none. The operator + can be used to
concatenate characters.

• Then click the button Ins to add these options to the field definition.

!!!! Tun DB Revamp general use 5 - 63

Example 1:
You have access to a real table "res_tab" which contains four fields
res1, res2, res3 and res4 corresponding to the quarterly results in a
particular year. You want to define the "Result" field in a table in your
virtual database that contains the sum of the four real fields.

On the Origin tab, for the field "Result":

• Select the "res_tab" table and the "res1" field in the Field option's
list boxes.

• Select the operator + in the list box of the Operation option.
• Click the Mod button to replace the default entry. The new entry is

"res_tab.res1 +".
• Next select the "res_tab" table and the "res2" field in the list boxes

of the Field option.
• Select the operator + from the Operation list box again.
• Click the button Ins to add the newly created entry "res_tab.res2 +".
• Do the same for the field "res3".
• For the field "res4", select the None operator instead of +.
• The Result field is finally defined from the following list:

res_tab.res1+
res_tab.res2+
res_tab.res3+
res_tab.res4

which means that the Result field contains the sum of the four fields
"res1"," res2", "res3" et "res4".

Example 2:
You want the Results field to show the sum of the year's sales. To do
that, find the sum of all the res1 fields, res2 fields,... and then find the
sum of these four results.

On the Origin tab of the Result field:

• Select the Sum function from the Function field list box.
• Select the res_table table and the res1 field from each of the Field

option's list boxes.
• Select the + operator from the Operation option's list box.
• Click the Mod button to replace the default entry. The new entry is

"res_tab.res1 +".

5 - 64 Data Access !!!!

• Do the same for the fields "res2" and "res3". For the field "res4",
select the operator "none" instead of the Operation option's "+"
operator.

You can change an item in a field definition using the Mod button (the
highlighted element is replaced by the values selected above). Click the
Delete button to delete the highlighted item.
You can change an item in a field definition using the Mod button (the
highlighted element is replaced by the values selected above). Click the
Delete button to delete the highlighted item.

After defining the field, click Apply for the new options to take effect.

As soon as you define a new virtual field, remember to define the joins
between the table(s) used to create the virtual table, if there are any. See
the section "Inter-table links".

To check that the calculation you assigned to the created field is what
you want, use Tun DB Revamp's query function. See "Querying real
and virtual databases".

Assigning field filters

You can complete the definition of a virtual field with a filter, that is,
you can define a condition for the calculation of the field value. The
filter corresponds to limiting conditions in the query (as in MS Query).

Example:
You want to obtain the sum of the fields "res1" when the "res2" field is
greater than a particular value. The condition on "res2" is a filter.

Tun DB Revamp lets you attribute a filter to virtual fields that is used
when the end user utilizes the field. A filter can be:

• Static: The filter value is fixed.
• Dynamic: Users enter their own values when they make a query.

!!!! Tun DB Revamp general use 5 - 65

To assign a filter to a virtual field, select the field and then click the
Filter tab in the Property Box. Then do the following:

• Enter a label for the filter in the Label field. The label is optional
for a static filter. For a dynamic filter, the label must indicate the
purpose of the filter for which the user is asked to supply a value.

• Select the table and field to apply the filter to from the Field drop-
down list boxes.

• Select the comparison operator from the Comp drop-down list box.
• For static filters, enter the filter value in the Value field. For

dynamic filters, enter a question mark (?).
• Click Ins to insert the defined criterion.

You can create a set of conditions or criteria: Define the criteria as
described above. Select And or Or to add the extra criteria.

To check that the filter you assigned to the created field is what you
want, use Tun DB Revamp's query function. See "Querying real and
virtual databases".

If the filter is dynamic, queries to the virtual field display a window like
the following:

Enter the value requested to apply the filter to the virtual field. Click the
Values... button to display the list of possible values for field in
question.

5 - 66 Data Access !!!!

Inter-table links

The fields defined in a virtual table are obtained from one or more
tables in a real database.

For each virtual table, it's essential to define the links between the real
tables from which its constituent fields are extracted. Defining these
links makes it possible to create the joins between the real tables when
the end-user queries the virtual database. The links can be direct or
indirect (that is, links between one table and another or between several
tables via intermediary tables).

" Defining links

The simplest way is to define the links at the same time as you define
the fields in the virtual table. The real tables used to define the fields
must be linked directly or indirectly to the other real tables used by the
virtual table.

To define links between real tables for the same virtual table, select the
virtual table and do the following:

• Click the Links tab for the virtual table.
• For each real table, select the real table name and the field to use as

a join with the other table. To do this, use the list box Key1 for the
first real table, and Key2 for the second real table.

Note:
The names of the two fields linking the tables can be different, even if
they represent the same data.

• Select a comparison operator in the Comp list box.

!!!! Tun DB Revamp general use 5 - 67

• Click the Ins button to add the link to the list of links in the virtual
table.

You can change a link with the Mod button after changing the values of
the selected item. Click Del to delete the selected item.

Click Apply to validate the list of links you've defined.

" Checking links

Tun DB Revamp provides a function for verifying the links you define
between the real tables to construct the virtual table.

For each virtual table, you can easily check if the real tables used are
linked and if the defined links form a coherent whole.

To do this, click the "magic wand" button on the Links tab.

Tun DB Revamp then examines all the links you've defined and
detects direct or indirect links that isolate particular tables from the rest.

When a link between two tables is missing, Tun DB Revamp tries to
link them using two fields of the same name.

5 - 68 Data Access !!!!

If the two fields exist, Tun DB Revamp proposes to define a link
between them as follows:

In most cases, the proposed link is the right one. If, however, you think
that the two fields proposed by Tun DB Revamp mustn't form the link
between the tables, define the link manually as described in the section
"Defining links".

If two unlinked tables don't have fields of the same name, Tun DB
Revamp displays a list of the unlinked tables:

In this case, define the link manually as described in the section
"Defining links".

Querying real and virtual databases

Tun DB Revamp includes a query function for real and virtual
database tables and fields.

You can use this function to view a real or virtual database table or field
directly from Tun DB Revamp without using a query tool like MS
Query.

To query a table (or a field) in the real database, choose
Query####Source (or Query####Environment) from the main menu, or

click the toolbar button .

!!!! Tun DB Revamp general use 5 - 69

A pane opens below the real or virtual database pane depending on the
option you chose. You can choose both options at the same time.

To limit the number of records and the column width displayed when
you query a table or a field, choose View####Options... from the main
menu and click the Query options tab:

Enter the maximum number of records to display in the fiels Maximum
number of rows in query result.

Enter the maximum column width to display in the field Maximum
size of columns in query result.

5 - 70 Data Access !!!!

Note:
If limits were defined when the data source was created (see "Creating
a data source"), they have a higher priority than the Query options.

Example:
Say a variable limit of 11 through 15 lines was set when the real data
source was configured.

If you query a real database containing more than 11 records, a
warning message is displayed, informing you of the limit. The exact
warning message depends on the type of limit used.

Validating an environment

Tun DB Revamp includes a function for verifying the consistency
between the contents of the environments you create (as administrator)
and the contents of the real database used. This is especially useful
when changes have been made to the structure of the real database (for
example, a field has been changed or deleted), that you haven't
accounted for in the virtual database.

To use this function, you must validate the environment before you
export it to avoid any possible inconsistency. Choose File➔➔➔➔ Validate

Environments from the main menu or click the button in the
toolbar.

Example:
Take, for example, the case where the "parameters:1" table and its
fields have been copied to the environment "Marketing". Each field in
the virtual table thus created has the "parameters:1" table as its point
of origin.

If this logical table is consequently deleted in the real database, the
fields in the virtual table will no longer have a point of origin.
Similarly, all the tables with a reference to the "parameters:1" table in
their links will become incoherent.

!!!! Tun DB Revamp general use 5 - 71

On a request for environment validation, Tun DB Revamp:

• Identifies the virtual tables with links to the deleted table and offers
to delete them. In this case, it's better not to delete them: Delete the
fields that are copied from fields in the deleted table.

• Identifies the virtual fields copied from the deleted table and
proposes to delete them.

If no inconsistency is detected, the following window is displayed:

Exporting data source environments

To make the database redefined by its environments available to users,
you must export it from the PC to the server.

To export data source environments from the PC to the server, choose

File➔➔➔➔ Export... from the main menu or click the toolbar button .

5 - 72 Data Access !!!!

This operation creates or updates the three tables containing the
revamped database information.

Updating a virtual data source

When you change the name of an environment, you can update the
corresponding virtual data source. This functionality is automatic if you
selected the Auto Data Source Update check box (choose
View➔➔➔➔ Options).

This opens the following dialog box:

If the option is selected, there are two possibilities:

• If the Display Warnings check box is selected, Tun DB Revamp
requests confirmation before performing an automatic update.

• If this check box isn't selected, the update is carried out
automatically without confirmation.

If the Auto Data Source Update check box isn't selected, choose
Insert➔➔➔➔ Create/Update Data Source from the main menu or Update
Data Source from the context menu for the current environment to
update the corresponding data source.

If you want to cut the link temporarily between an environment and its
data source, choose Insert➔➔➔➔ Remove Data Source or Remove Data
Source from the context menu. You can later recreate the link by
choosing Update Data Source.

!!!! Tun DB Revamp general use 5 - 73

Creating a virtual data source

The chapter "Configuration and use" describes how to create a virtual
data source with ODBC Administrator.

You can also do this with Tun DB Revamp. Choose Create associated
data source... from the environment's context menu.

The following dialog box opens:

Enter a description of the data source in the Description field. Select
the Trace File check box and specify the log file if you want to keep an
activity trace for the virtual data source. For more information on this
dialog box, see the section "Creating a virtual data source" in the
chapter "Configuration and use".

Displaying warnings

You can choose to show or hide warnings while you're using Tun DB
Revamp. These warnings supply information, for example, on
inconsistencies which arise during the revamping of the database and
missing elements in the new structure.

5 - 74 Data Access !!!!

Tun DB Revamp displays these warnings by default. However, you
can switch off the display of message boxes by clearing the Display
Warnings check box (View➔➔➔➔ Options).

Local revamped data source management

You can save and open locally the description of the revamped
database. This can be useful if you don't want to export the revamped
database immediately, or if you want to keep earlier versions. This
description is saved in a file with the extension ".dbr".

" Saving locally

To save the description of a revamped database produced with Tun DB
Revamp locally, choose File➔➔➔➔ Save (or File➔➔➔➔ Save As... to save it
under a different name), or click the button in the toolbar.

The path for the real data source is also saved. This means you can later
export the data source and its environments without modifying the path.

" Opening a local data source

To open a revamped data source that's saved in a ".dbr" file on the local
machine, choose File➔➔➔➔ Open from the main menu or click the toolbar

button .

Select the revamped data source you want (a ".dbr" file).

You can open the most recently used data sources from the File menu.

!!!! Tun DB Revamp general use 5 - 75

" Reloading the database structure

When you open a ".dbr" saved locally, you can update the database
structure from which the environments were created. This is useful
when the real database has been changed since the last time the ".dbr"
file was saved. To do that, choose File####Reload database structure
from the main menu.

After this operation, it's recommended that you validate the
environments created previously, especially if the real fields used to
define the virtual fields have been moved or deleted. See "Validating an
environment" for more details.

Field identification

" Field icons

Tun DB Revamp uses field icons to make it easier to read real or
virtual tables.

Icons Meaning

character field

date field

numeric field

binary field

table primary key

" Real field properties

You can choose Properties from a real table field's context menu (left
pane) for additional information on the field.

5 - 76 Data Access !!!!

The Field properties dialog box opens:

Note:
The type of field referred to here corresponds to the native type and so
depends on the DBMS used.

PART 3
APPENDICES

!!!! Reference A - 79

A

REFERENCE

Index

Note:
xxx stands for the relative file extension for a specific database. The file
extensions are as follows:

• ifx Informix
• ora Oracle
• syb Sybase
• db2 DB2
• pro Progress
• pro7 Progress7
• pro8 Progress8
• ism C-ISAM
• mvs DB2 for MVS

CONFIG.XXX File containing the working and security
parameters of the Tun SQL UNIX server

DBMAP Windows application to create or edit
character conversion tables.

DBSCRIPT Windows application which interprets and
executes SQL batch files

DBSHOW Windows application for testing and
configuration

PARAM.XXX File containing the setup parameters of the
Tun SQL UNIX server

TUNODBC200.XXX Tun SQL UNIX server

A - 80 Data Access !!!!

CONFIG.XXX

Contains the working and security parameters of the Tun SQL server.

" Description

The config.xxx files supply a certain number of parameters to the Tun
SQL server. Unlike the param.xxx files, the parameters don't concern
the overall functioning of the server but refer to a particular database.
For example, a config file looks like this:

#Optional declaration for databases
#Example :
#[base_name]
#Define=ENV_VARIABLE:value
#RowLimitMode=None|Absolute|Fixed|Variable|Extended|1
|2|3|4|5
#RowLimitValue=value
#RowLimitMax=value
#DbmsName=DatabaseName
#Version=DatabaseVersion

In this section, list allowed configuration
(base,user,product)
Base_Name|*,User_Name|*,Product_Name|*
[Allowed]

In this section, list denied configuration
(base,user,product)
Base_Name|*,User_Name|*,Product_Name|*
[Denied]

This file can contain as many sections as there are databases managed
by the DBMS associated with the Tun SQL UNIX server. You don't
have to include all the databases if you have no special parameters to
set for them.

The title of each section is the name of the corresponding database
enclosed in square brackets (for example, [tunsqldemo]). You can
define the following parameters for each section:

!!!! Reference A - 81

Define=END_VARIABLE:value

Assigns a value to the environment variable ENV_VARIABLE before
the opening of the database (database installation directory, date
format...). Include this option for each database in the config file.

RowLimitMode=None|Absolute|Fixed|Variable|Extended|1|2|3|4|5
RowLimitValue=value
RowLimitMax=value

Some office applications let you compose your own SQL requests. In
other cases, applications tend to read a table in its entirety before
displaying it on the screen. This doesn't pose any real problem if it's a
question of small tables contained in a local database. However,
insurmountable problems can arise when you're dealing with very large
tables in a centralized, remote database. In this case, there's a
considerable number of exchanges on the network and there is
insufficient memory in the PC to store the received data. The PC has to
be frequently rebooted after this type of select request. To compensate
for this problem, the Tun SQL ODBC driver incorporates limits that
you define with the RowLimitMode parameter. If this parameter is
defined, it takes priority over the values defined in the data source on
the PC.

The parameter can take five different values:

None No limit is imposed by the ODBC driver

Absolute The ODBC driver doesn't load more than
RowLimitValue rows in one select request. No
messages are displayed to inform the user.

Fixed The ODBC driver doesn't load more than
RowLimitValue rows in one select request. A message
is displayed informing the user.

Variable The ODBC driver doesn't load more than
RowLimitValue rows in one select request. However,
it displays a message proposing to load more within the
limit of the maximum value (RowLimitMax).

Extended
Limit

The ODBC driver doesn't load more than
RowLimitValue rows in one select request. However,
it displays a message proposing to load more without a
maximum value. In this case, the message displayed is
really only a warning.

A - 82 Data Access !!!!

DbmsName=DatabaseName

Sets or changes the name of the database to transmit to the ODBC
driver.

Version=DatabaseVersion

Sets or changes the version number of the database to transmit to the
ODBC driver.

In addition to the sections corresponding to each database, the config
file can include [Allowed] and [Denied] sections. You can use these
sections to secure access to certain databases. These sections function
as follows:

[Allowed]

This section must contain a series of triple terms such as:

base_name,user_name,product_name

where:

• base_name is the name of a database
• user_name is the name of a user of the database
• product_name is the name of a Windows application that uses the

server.

Each set of triplets indicates if a user (user_name) is authorized to use
the database (base_name) with the Windows application
(product_name). Each parameter can be replaced by the generic
character *.

For example, the triplet tunsqldemp,*, excel means that all the users
can use the base tunsqldemo from the application EXCEL except for
those whose names are contained in a similar triplet in the [Denied]
section.

[Denied]

This section contains a series of triple terms similar to those in the
[Allowed] section.

!!!! Reference A - 83

Each set of triple terms indicates if a user (user_name) is not
authorized to use the database (base_name) with a Windows
application (product_name). Each term can be replaced by the generic
character *.

For example, the triple term *,john,excel means that the user john
cannot use any database from the application excel except for those
whose names are contained in a similar, contradictory triple term in the
[Allowed] section.

Notes:
For a Tun SQL server to take account of a config file, you must use the
command line option -c.

Two different Informix database engines may coexist (Informix
versions 5 and 7). For example, one database could be accessed by
database engine 1 from the directory /u/informix1 and a second by
database engine 2 from the directory /u/informix2. In this case, the file
config.ifx contains:

[database1]
Define=INFORMIXDIR:/u/informix1
Define=DBPATH:/u/database1
Version=5.01
[database2]
Define=INFORMIXDIR:/u/informix2
Define=DBPATH:/u/database2
Version=7.01

" See also

param.xxx, tunodbc200.xxx

A - 84 Data Access !!!!

DBMAP

Windows application for creating or editing conversion tables.

" Syntax

DBMAP [-ffile_name]

" Description

You can use Tun DB Map to create or edit character translation tables.
The translation tables lets you avoid problems caused by the differences
in the codification of accented characters on the PC and the remote
DBMS. For the translation tables to take effect, you must declare them
when you define the data source.

-ffile_name

Replace "file_name" with the name of the existing translation table you
want to use.

!!!! Reference A - 85

DBSCRIPT

Windows application for executing SQL batch files.

" Syntax

DBSCRIPT [-ddata_source] [-ffile_name]

" Description

With Tun DB Script, you can execute a whole list of SQL requests in a
single operation. It interprets the SQL commands one by one and stops
when it encounters an error. You can also use Tun DB Script to change
and save SQL batch files.

Tun DB Script is useful for downloading the contents of a database
from a Windows PC to a remote DBMS. You can also use it to update
or clear large databases.

-ffile_name

Replace "file_name" with the name of the file containing the SQL
commands. This file is loaded when the application starts running.

-ddata_source

Replace "data_source" with the name of the data source that the SQL
batch file will use. Tun DB Script doesn't automatically create the
connection with the data source. You must do this subsequently "by
hand".

A - 86 Data Access !!!!

DBSHOW

Windows application for testing and configuring.

" Syntax

DBSHOW [-hhost_name]

" Description

You use Tun SQL to query a remote host to see if there are any Tun
SQL servers present.

Enter the name of the host in the Host field, then click Find Servers to
obtain this information. Tun DB Show returns the names of any Tun
SQL servers correctly installed on the remote machine and also the
names of the DBMSs they interface with.

This application is particularly useful for checking the conformity of
the installation.

-hhost_name

Replace "host_name" with the name of the host you want to query.

!!!! Reference A - 87

PARAM.XXX

File containing the setup parameters of the Tun SQL server.

" Description

Rather than running Tun SQL servers with a large number of
command line options, it's better to save the options, each on a separate
line, in a file and transmit the name of the file to the host using the -f
option.

The Tun SQL installation procedure uses this mechanism and writes
the options to param.xxx files (where xxx stands for the abbreviated
name of the DBMS (param.ora, param.syb, param.ifx, etc.).

Here's an example:

-output=/dev/null
-output2=/dev/null
-DORACLE_HOME=/home3/oracle/7.1.4
-DORACLE_SID=odbc
-config=/usr/tunsql/config.ora

The meaning of the different options is explained in the section
tunodbc200.xxx.

" Progress

Some Progress fields may contain several values: These are known as
"array fields". To view these values from applications like MS Query
and MS Access, the following option must appear in the file
param.proX (where X is the number of the Progress version used): :

-arrayfields=*

where * stands for one of the following characters:

$, &, #, %, - ,_.

The default character is _.

A - 88 Data Access !!!!

The columns required to view the different array field values will then
be named:

columnname*n*,

where * is the character chosen in the file param.proX (by default, "_")
and n is the position of the value in the table.

Example:
The second value in the array field appears in column col_2_.

If using the character "_" causes a problem when the column is
generated (other columns may have a similar name), you must choose
one of the other four characters.

" See also

config.xxx, tunodbc200.xxx

!!!! Reference A - 89

TUNODBC200.XXX

Tun SQL server.

Note:
The different Tun SQL servers have a number of options in common.
You can obtain a list of these options by running the executable
tunodbc200.xxx with the option -a[ll], where xxx stands for the
database extension.

" Syntax

tunodbc200.XXX
-a[ll]

 -c[config]=config_file
 -Dname=value
 -db[ms]=DBMS_name
 -de[bug]
 -f[ile]=param_file
 -h[old]
 -i[nter]
-l[owercase]
-n[opassword]

 -nor[owcount]
 -o[utput]=file_name
 -o[utput]2=file_name
 -ow[ner]
 -p[rogress]=XX
 -s[electby]
 -sv[archar]
 -sy[scolumns]
 -t[imer]=xx
 -u=user1,user2...
 -v[ersion]=DBMS_version_number
-x=user1,user2...

" Common options

-a

Lists all the options supported by tunodbc200.xxx.

A - 90 Data Access !!!!

-c=config_file

Associates a configuration file (config.xxx) with the server (Cf.
config.xxx).

-db=name

Associates a DBMS name with the Tun SQL server. This is the name
that's displayed by Tun DB Show when you click Find Servers.

-de

Tells the server to function in trace mode. By default, the messages are
displayed on the device /dev/console.

-Dname=value

Sets the environment variable "name" to the value "value" before the
server is started (database installation directory, date format, etc.). Use
this option in the command line as many times as required. It's
indispensable to define specific variables for the Tun SQL server to
function with some DBMSs. This definition is performed by the
installation procedure. For reference purposes, these variables are
needed for the following DBMSs:

Oracle
ORACLE_HOME: Oracle installation directory.
ORACLE_SID: Default database.

Informix
INFORMIX_DIR: Informix installation directory.
DBPATH: Directory containing the database (only SE).

Sybase
SYBASE: Sybase installation directory.
SYBSERVNAME: Identifier of the server setup file (optional). This
value is equivalent to the variable DSQUERY, defined and used by
SYBASE.

-f=param_file

Replace "param_file" with the name of the file containing the program
options. Use this option to run the program without having to enter
multiple options.

!!!! Reference A - 91

-i

Uses interactive test mode to check the server is working properly.

-o=file

Replace "file" with the name of the file or device that the server and
access controller (Watchdog) trace messages are written to. Works only
in debug mode.

-o2=file

Replace "file" with the name of the file or the device that only the
Watchdog trace messages (and not the server's) are written to. Works
only in debug mode.

-t=xx

Assigns a timeout value. If no reply is received from the PC after this
time, the Tun SQL server thinks the PC has stopped. The server
therefore also stops. This value is of lesser priority than that assigned on
the PC when the data source is defined.

-u

Used with the -x parameter to define authorized users ("*" for
everyone). The default value is *. For example:

-x = *
-u = bill (only "bill" is authorized)

-v=XX

Associates a DBMS version number with the Tun SQL server. This
value is displayed by Tun DB Show.

-x

Used to define users who are denied access ("*" for everyone). For
example:

-u = *
-x = bill (only "bill" is denied access)

A - 92 Data Access !!!!

" Informix options

-h

By default, Informix doesn't maintain the cursors open during the
execution of the commit and rollback commands. The -h option
ensures the cursors are kept open after one of these commands if the
applications using this type of server can't do it.

-n

Applies only to SCO UNIX 5. If the system SCO UNIX 3.2 version 5
can't check user passwords correctly, this option cancels password
checking.

-s

By default, Informix can't execute select commands with a sort option
(group by or order by) on a column which isn't included in the select
command. Use the -s option to compensate when applications make no
provision for this.

" Oracle options

-l

If tables, columns, indexes or views are created in the catalog with
lowercase characters, the -l option ensures that the catalog functions
return data enclosed in quotation marks. Applications using this type of
server create queries with names in quotation marks.

" Progress options

-n

Applies only to SCO UNIX 5. If SCO UNIX 3.2 version 5 can't check
user passwords correctly, this option cancels password checking.

!!!! Reference A - 93

-nor

Progress can't tell how many lines have been modified or deleted when
an update or delete command is executed. By default, the server
compensates for this lack. However, there's a time penalty each time an
update or delete command is executed. If applications using the server
don't need to know the number of modified lines, the -nor option
cancels server compensation, thus saving time.

-ow

By default, the server doesn't support the notion of object owner in the
database. Some applications try to add an owner prefix when owners
are returned with the objects, provoking errors during execution. This
option, add owners, is useful when the application needs to know the
owner and the owners are correctly handled.

-p=XX

If you must use options that are specific to Progress (for example, the -
Q option which forces the database to respect the ANSI norm), set the
parameter as -p=XX, where XX stands for the string containing the
required options in quotation marks.

-sv

Progress uses only one type of character string. By default, all the
strings are considered to be of a fixed length (SQL_CHAR in ODBC).
If this option is used, the strings are treated as though they were of
variable length (SQL_VARCHAR in ODBC).

-sy

Progress can define system or hidden columns that aren't returned when
a search of all the columns are carried out using a wildcard character.
This is why, by default, the server doesn't describe the columns in its
catalog. If, however, the hidden columns are required, this option
enforces their return.

" See also

param.xxx, config.xxx

!!!! SQL statements used in C-ISAM B - 95

B

SQL STATEMENTS USED IN C-ISAM

Principle instructions

CREATE DATABASE .. 97

CREATE TABLE .. 98

DEFINE TABLE.. 99
COLUMN DEFINITION OPTION.. 100
DEFAULT CLAUSE ... 101
NOT NULL CLAUSE.. 102
CONSTRAINT DEFINITION SUBSET...................................... 103
CONSTRAINT DEFINITION OPTION...................................... 104
FILE IS OPTION ... 105

CREATE INDEX... 106

CREATE SYNONYM ... 107

COMMENT ... 108

DROP DATABASE... 109

CONNECT DATABASE... 110

DISCONNECT DATABASE .. 111

DROP INDEX.. 112

DROP TABLE ... 113

DROP SYNONYM.. 114

B - 96 Data Access !!!!

UNDEFINE TABLE .. 115

SELECT ... 116
SELECT CLAUSE... 117
EXPRESSION.. 118
FROM CLAUSE .. 119
WHERE CLAUSE ... 120
GROUP BY CLAUSE.. 121
HAVING CLAUSE.. 122
ORDER BY CLAUSE.. 123

DELETE... 124

INSERT.. 125
VALUES CLAUSE.. 126

UPDATE.. 127
SET CLAUSE... 128
AGGREGATE EXPRESSION... 129

SQL statement syntax

The SQL statements are presented using the following syntax:

• Reserved names are in uppercase characters (INSERT, UNIQUE,
etc.). You can, however, use lowercase characters to enter them on
the command line.

• Variable names are in italic (Databasename, etc.).
• Square brackets indicate optional parameters or entries

([optional]).
• Braces and the expression xor indicate an exclusive choice ({A

xor B xor C}).
• The exponent n (n) indicates a sequence that can be repeated from

0 to n times (sequencen).

Punctuation marks and parentheses are literal symbols that must be
entered exactly as they appear.

!!!! SQL statements used in C-ISAM B - 97

CREATE DATABASE

" Purpose

Creates a new database.

" Syntax

CREATE DATABASE Basename

Note:
The database name must be less than 18 characters.

" Use

The database created becomes the current database.

This statement can only be used with sqltools (Tun SQL tool).

After the creation of the database, a directory named Databasename.ism
is created. This directory contains the extra C-ISAM files composing
the catalog (SysTables, SysColumns, SysIndexes, SysDefaults). It is a
subdirectory of the directory designated by the ISAM-PATH
environment variable if set, or of the current directory.

" Example

CREATE DATABASE TEST;

Creates the directory test.ism containing the files SysTables.dat,
SysTables.idx, SysColumns.dat, SysColumns.idx, SysIndexes.dat,
SysIndexes.idx, SysDefaults.dat, and SysDefaults.idx.

B - 98 Data Access !!!!

CREATE TABLE

" Purpose

Creates a new table in the current database and places data integrity
constraints on its columns or a group of columns.

" Syntax

CREATE TABLE tablename (Column definition [,Column definition]n)
[,Constraint definition] n

Note:
The table name must be less than 18 characters.

" Use

Table names in the same database must be unique. Each column in the
same table must have a different name.

The table name can be prefixed with the name of a UNIX user who
becomes the owner of the table. If no name is specified, the current
login ID is used.

" Example

CREATE TABLE TABLE_TEST (c1 char);

This statement creates table table1 in the relational database by creating
the associated C-ISAM files (table1_100.dat and table1_100.idx, for
example).

The C-ISAM file names are created by taking the first seven characters
of the table name and adding a unique value to them. If the table name
has less than seven characters, the new file names are padded out with
underline characters (_). The unique value is 100 for the first table
created: This value is then incremented by 1 for each new table.

!!!! SQL statements used in C-ISAM B - 99

DEFINE TABLE

" Purpose

Defines a new table in the current database, with data integrity
constraints on its columns or a sequence of its columns, and conditional
options for the existence of files.

" Syntax

DEFINE TABLE tablename [File is option] (Column definition
[,Column definition]n) [,Constraint definition] n

Note:
The table name must be less than 18 characters.

" Use

Table names in the same database must be unique. Column names in
the same table must all be different.

The table name can be prefixed with the name of a UNIX user who
becomes the owner of the table. If no name is specified, the current
login ID is used.

" Example

DEFINE TABLE TABLE1 file is file_1 (c1 char);

In this example, the file_1 C-ISAM files (file_1.idx and file_1.dat)
already exist: Only the table must be defined.

B - 100 Data Access !!!!

COLUMN DEFINITION OPTION

Used in the statements CREATE TABLE and DEFINE TABLE.

" Purpose

The "column definition" option in the DEFINE TABLE (CREATE
TABLE) statement lists the name, type, default value and constraint for
a single column.

" Syntax

Columnname Data type [Default clause] [Not null clause] [Constraint
definition subset]

" Example

CREATE TABLE PETS
(name char (20),

 race char (25),
 sex char(1));

This table is composed of the columns name, race and sex.

!!!! SQL statements used in C-ISAM B - 101

DEFAULT CLAUSE

Used in the option COLUMN DEFINITION.

" Syntax

DEFAULT [{Literal xor NULL xor Current xor Today xor User}]

" Use

The default value is inserted into the column when an explicit value is
not specified. If a default isn't specified and the column allows nulls,
the default is NULL.

LITERAL String of characters or numeric constant characters defined by the user
NULL Null value
CURRENT Current date and time (only usable with TIMESTAMP type)
TODAY Current date (only usable with DATE type)
USER Name of the current user (only usable with VAR or VARCHAR type)

" Example

CREATE TABLE PETS
(name char (20),
 race char(25),
 sex char(1) DEFAULT 'M')

In this table, the default value for sex is a string literal: 'M'.

B - 102 Data Access !!!!

NOT NULL CLAUSE

Used in the option COLUMN DEFINITION.

" Purpose

If you don't indicate a default value for a column, the default is null
unless you include the NOT NULL keywords after the data type of the
column. In this case, there is no default value for the column.

" Syntax

NOT NULL

" Example

CREATE TABLE INVOICE
(invoice_id longint NOT NULL,
 customer_name char (30))

If the column is designated as NOT NULL (and no default value is
specified), you need to enter a value in this column when inserting a
row or updating that column in a row. If not, the database server returns
an error.

!!!! SQL statements used in C-ISAM B - 103

CONSTRAINT DEFINITION SUBSET

Used in the option COLUMN DEFINITION.

" Purpose

The constraint definition subset lets you create constraints for a single
column.

" Syntax

{UNIQUE xor PRIMARY KEY} [CONSTRAINT Constraint name]

Note:
The constraint name mustn't be longer than 18 characters and must be
unique in the database.

" Use

UNIQUE Constrains the field to be unique
PRIMARY KEY Constrains the field to be unique and to be the primary key of the

table

If the name of the constraint isn't specified, a default name is assigned.

" Example

CREATE TABLE INVOICE
(invoice_number longint UNIQUE CONSTRAINT un_invoice,
 customer_name char (30))

The unicity constraint of the invoice number is called un_invoice.

B - 104 Data Access !!!!

CONSTRAINT DEFINITION OPTION

Used in the statements CREATE TABLE and DEFINE TABLE.

" Purpose

The constraint definition option lets you create constraints for a set of
columns (from 1 through 8 columns).

" Syntax

{UNIQUE xor PRIMARY KEY} (Columnname
[,Columnname]n)[CONSTRAINT Constraint name]

" Use

UNIQUE Constrains the field to be unique for the set of columns
PRIMARY KEY Constrains the field to be unique and to be the primary key for the

set of columns

If the name of the constraint isn't specified, a default name is assigned
to the constraint.

Each column named in a constraint must be a column in the table and
can't appear in the constraint list more than once.

" Example

CREATE TABLE FAMILY
(name char (20),
 surname char (20),
 birth_date date,
 PRIMARY KEY (name, surname) CONSTRAINT pk_family)

The primary key constraint pk_family affects the name and surname
fields.

!!!! SQL statements used in C-ISAM B - 105

FILE IS OPTION

Used in the statement DEFINE TABLE.

" Purpose

Defines the use of the table according to the existence or non-existence
of a file.

" Syntax

FILE IS filename

" Use

If this option is used, no C-ISAM files are created. Tun SQL must find
the files filename.dat and filename.idx in the directory of the current
database before it can use the table.

If the option isn't used, a default name is assigned to the files created in
the current database directory.

" Examples

CREATE DATABASE TEST;
DEFINE TABLE TABLE1 FILE IS FIC1 (C1 CHAR);

In this example, no files are created. The files foo1.dat and foo1.idx
must be added to the directory test.ism.

DEFINE TABLE TABLE1 (C1 CHAR);

In this example, the files table_100.dat and table_100.idx (default
names) are created in the directory test.ism.

B - 106 Data Access !!!!

CREATE INDEX

" Purpose

Creates an index for one or more columns in a table (from 1 through 8
columns).

" Syntax

CREATE {UNIQUE xor DISTINCT} INDEX indexname ON
tablename (Columnname [,Columnname] n)

Notes:
The index name mustn't be longer than 18 characters.
The number of columns can vary from 1 through 8.

" Use

UNIQUE Constrains the index to be unique
DISTINCT Synonym for UNIQUE

For tables defined with the FILE IS option, the CREATE INDEX
statement must be executed before copying the files filename.dat and
filename.idx.

" Example

CREATE DISTINCT INDEX ix_name ON Table1 (name,
birth_date) ;

This statement creates the index ix_name for the name and birth_date
columns in the table Table1.

!!!! SQL statements used in C-ISAM B - 107

CREATE SYNONYM

" Purpose

Attributes a synonym to a table.

" Syntax

CREATE SYNONYM synonymname FOR tablename

Notes:
The name of the synonym must not be longer than 18 characters.

" Use

The name of a synonym must be preceded by the name of a UNIX user
who then becomes the owner of the synonym. If no name is given, the
current login ID is used by default.

" Example

CREATE SYNONYM employee FOR Table1;

This statement creates the synonym employee for the table Table1.

B - 108 Data Access !!!!

COMMENT

" Purpose

Attributes a comment to a table or a synonym.

" Syntax

COMMENT ON {tablename xor synonymname} IS 'comment string'

" Example

COMMENT on TABLE1 IS 'Employees' Table'

!!!! SQL statements used in C-ISAM B - 109

DROP DATABASE

" Purpose

Removes (deletes) an entire database, including all catalogs, indexes
and data.

" Syntax

DROP DATABASE basename

Note:
The database name must be less than 18 characters.

" Use

A database that's being used by another user can't be dropped.

The DROP DATABASE statement doesn't remove the database
directory if it contains any files other than those created for the
database's tables and indexes.

" Example

DROP DATABASE DBTEST;

Deletes the database DBTEST.

B - 110 Data Access !!!!

CONNECT DATABASE

" Purpose

Connects to a different database. You can't perform operations on a
database if you're not connected to it.

" Syntax

CONNECT DATABASE basename

" Example

CONNECT DATABASE DBTEST2;

Connects to the database DBTEST2.

!!!! SQL statements used in C-ISAM B - 111

DISCONNECT DATABASE

" Purpose

Disconnects from the current database.

" Syntax

DISCONNECT DATABASE basename

" Example

DISCONNECT DATABASE DBTEST2;

Disconnects from the database DBTEST2.

B - 112 Data Access !!!!

DROP INDEX

" Purpose

Deletes an index.

" Syntax

DROP INDEX indexname

" Example

DROP INDEX ix_name ;

Deletes the index ix_name.

!!!! SQL statements used in C-ISAM B - 113

DROP TABLE

" Purpose

Deletes a table, along with its associated indexes and data.

" Syntax

DROP TABLE {tablename xor synonymname}

" Use

If a synonym is deleted by the statement DROP TABLE, the table is
also deleted.

If the statement DROP TABLE applies to a table, the table's synonyms
will only be deleted if the statement DROP SYNONYM is used.

" Example

DROP TABLE TABLE1;

Deletes the table TABLE1, and its indexes and data.

B - 114 Data Access !!!!

DROP SYNONYM

" Purpose

Deletes a previously defined synonym.

" Syntax

DROP SYNONYM synonymname

" Use

If a table is dropped, the synonym remains in place until you explicitly
drop it using the DROP SYNONYM statement.

" Example

DROP SYNONYM employee;

Deletes the synonym employee attributed to the table Table1. The table
is not deleted with this statement.

!!!! SQL statements used in C-ISAM B - 115

UNDEFINE TABLE

" Purpose

Deletes a table defined by a DEFINE statement but doesn't delete the
associated data and index files.

" Syntax

UNDEFINE TABLE {tablename xor synonymname}

" Example

UNDEFINE TABLE TABLE1;

Deletes the table TABLE1 created by the statement DEFINE TABLE
TABLE1.

B - 116 Data Access !!!!

SELECT

" Purpose

Queries a database.

" Syntax

SELECT Select clause From clause [Where clause] [Group by clause]
[Having clause] [Order by clause]

" Use

You can query the tables in the current or a different database.

" Example

SELECT customer_name
FROM customers
WHERE turn_over > 250
ORDERBY country ;

This query reads the customers with an annual turnover of over 250
from the customers table and returns their names listed by country.

!!!! SQL statements used in C-ISAM B - 117

SELECT CLAUSE

Used by the statements SELECT and INSERT.

" Syntax

[{ALL xor DISTINCT xor UNIQUE}] {Expression [[AS] Display
label] [,Expression [[AS] Display label]] n

In the SELECT clause, you specify exactly which data to select, and if
you want to omit duplicate values.

" Use

ALL Specifies that all the selected values are returned, even if they're
duplicates.

DISTINCT Removes duplicate rows from the query results.
UNIQUE Synonym for DISTINCT.

" Example

SELECT customer_name
FROM customers
WHERE turn_over > 250
ORDERBY country ;

This query reads the customers with an annual turnover of over 250
from the customers table and returns their names listed by country.

SELECT order_date, COUNT(*), paid_date - order_date
FROM orders
GROUP BY 1, 3

This query returns the order date, the number of orders and the
difference between the payment and order dates, grouped by order date
and time lapse (difference between the dates).

B - 118 Data Access !!!!

EXPRESSION

Used by the clause SELECT.

" Syntax

{ [{tablename xor synonymname xor tablealias}.] columnname
xor NULL
xor Literal number
xor Quoted string
xor User
xor Aggregate expression}

" Example

'Cordwainer'

The character string 'Cordwainer' is a subexpression.

!!!! SQL statements used in C-ISAM B - 119

FROM CLAUSE

Used by the statements SELECT and DELETE.

" Purpose

Lists the table or tables from which data are selected.

" Syntax

FROM {Table name xor Synonym name} [[AS] Table alias]
[,{Table name xor Synonym name} [[AS] Table alias]] n

" Example

SELECT customer_name, order_num
FROM customers c, orders o
WHERE c.customer_num = o.customer_num ;

In this statement, data is extracted from the tables customers and orders
and the tables are given aliases.

B - 120 Data Access !!!!

WHERE CLAUSE

Used by the statements SELECT, DELETE and UPDATE.

" Purpose

Specifies search and join conditions for the data that are selected.

" Syntax

WHERE Condition [AND Condition] n

" Example

SELECT customer_name
FROM customers
WHERE last_order_date < '28/07/1993'
ORDERBY country ;

In this example, the search condition is the last order date.

!!!! SQL statements used in C-ISAM B - 121

GROUP BY CLAUSE

Used by the statement SELECT.

" Purpose

Produces a single row of results for each group.

" Syntax

GROUP BY {Table name xor Synonym name } . Column name xor
Select number}

[,{Table name xor Synonym name} . Column name xor Select
number}] n

" Use

A group is a set of rows that have the same values for each column
listed.

The "select number" variable is an integer that represents the position of
a column in the SELECT clause.

" Example

SELECT order_date, COUNT(*), paid_date - order_date
FROM orders
GROUPBY order_date, 3 ;

The results are grouped by order_date and paid_date - order_date.

B - 122 Data Access !!!!

HAVING CLAUSE

Used by the statement SELECT.

" Purpose

Applies one or more conditions to groups.

" Syntax

HAVING Condition

" Example

SELECT customer_num, call_dtime, call_code
FROM cust_calls
GROUP BY call_code, 2 , 1
HAVING customer_num < 42 ;

This query returns the call_code, call_dtime and customer_num tables
and groups them by call_code for all the calls from customers whose
customer number is less than 42.

!!!! SQL statements used in C-ISAM B - 123

ORDER BY CLAUSE

Used by the statement SELECT.

" Purpose

Sorts query results by the values contained in one or more columns.

" Syntax

ORDER BY {Table name . xor Synonym name .} Column name xor
Select number xor Display label} [,{Table name . xor Synonym name .}
Column name xor Select number xor Display label}] n

" Use

The "select number" variable is an integer that represents the position of
a column in the SELECT clause.

" Example

SELECT customer_name
FROM customers
WHERE turn_over > 250
ORDERBY country ;

This query returns its results ordered by country.

B - 124 Data Access !!!!

DELETE

" Purpose

Deletes one or more rows from a table.

" Syntax

DELETE FROM {Table name xor Synonym name}
[WHERE {Condition xor CURRENT OF Cursor name}]

" Example

DELETE FROM customers WHERE last_order_date<1992 ;

This statement deletes the rows from the customers table where the last
order date is earlier than 1992.

!!!! SQL statements used in C-ISAM B - 125

INSERT

" Purpose

Inserts one or more rows into a table.

" Syntax

INSERT INTO {Table name xor Synonym name} [(Column name
[,Column name] n)] {Values clause xor Select clause}

" Example

INSERT INTO Pets VALUES ('Socks', 'Cat', 'M') ;

This statement inserts the values 'Socks', 'Cat' and 'M' into the Pets
table.

B - 126 Data Access !!!!

VALUES CLAUSE

Used by the statement INSERT.

" Syntax

VALUES ({Variable name : Indicator variable xor NULL xor Literal
number xor Quoted string xor Literal Timestamp xor Literal date xor
Literal time} [,{Variable name : Indicator variable xor NULL xor
Literal number xor Quoted string xor Literal Timestamp xor Literal
date xor Literal time}] n)

" Use

When you use the VALUES clause, you can only insert one row at a
time. Each value that follows the VALUES keyword is assigned to the
corresponding column listed in the INSERT INTO clause (or to the
columns in order if a list of columns isn't specified).

" Example

INSERT INTO Pets VALUES ('Socks', , 'M') ;

This statement inserts the value 'Socks' in the first column and 'M' in
the third column of the table Pets. The second column is untouched.

!!!! SQL statements used in C-ISAM B - 127

UPDATE

" Purpose

Changes the value of one or more columns or one or more rows in a
table.

" Syntax

UPDATE {Table name xor Synonym name} SET Set clause [WHERE
{Condition xor CURRENT OF Cursor name}]

" Example

UPDATE Catalog SET item_price = 10 WHERE item_type =
'L' ;

This statement changes the price of all the 'L' type articles in the table
Catalog to 10.

B - 128 Data Access !!!!

SET CLAUSE

Used by the statement UPDATE.

" Syntax

{Column name = {Constant xor (Select statement) xor NULL}
[,Column name = {Constant xor (Select statement) xor NULL}] n

xor {(Column name [,Column name] n xor *} = (Select statement)

" Example

UPDATE Catalog SET item_price = 10

In this statement, the SET clause changes the price item_price to 10..

!!!! SQL statements used in C-ISAM B - 129

AGGREGATE EXPRESSION

Used by the statement SELECT or in an expression.

" Syntax

{COUNT(*)
xor
{MIN xor MAX xor SUM xor AVG xor COUNT} ([{DISTINCT xor
UNIQUE}] {Table name xor Synonym name xor Table alias} . Column
name)
}

" Example

SELECT COUNT (DISTINCT item_type) FROM Catalog ;

This statement returns the number of different types of article in the
table Catalog.

B - 130 Data Access !!!!

Data types

This section describes the data types supported by the SQL language
with their equivalent C language definitions. The descriptions
correspond to the SQL types used by CREATE TABLE. They are
native mode equivalents. For the importation of files created outside the
C-ISAM database with the command DEFINE TABLE, the
differences are indicated.

In the following table, the types in italics in the column "C language
type" only apply to the use of CREATE TABLE.

SQL type in the
database

SQL type in
ODBC

C language type

bit SQL_BIT unsigned char notnull_data;
unsigned char data;

byte SQL_TINYINT unsigned char notnull_data;
unsigned char data;

char(maxlength)
1 <= maxlength <= 32511

SQL_CHAR char data[maxlength];

varchar(maxlength)
1 <= maxlength <= 32511

SQL_VARCHAR char data[maxlength];

binary(maxlength)
1 <= maxlength <= 32511

SQL_BINARY unsigned char notnull_data;
unsigned char data[maxlength];

varbinary(maxlength)
1 <= maxlength <= 32511

SQL_VARBINARY unsigned char size_data[2];
unsigned char data[maxlength];

smallint SQL_SMALLINT short data; /* 2 bytes */
longint SQL_INTEGER long data; /* 4 bytes */
real SQL_FLOAT float data; /* 4 bytes */
double SQL_DOUBLE double data; /* 8 bytes */
decimal(prectot, precdec)
1<=prectot<=32 et
0<=precdec<=prectot

SQL_DECIMAL char data[(prectot+1)/2+1];

date SQL_DATE unsigned long data;
time SQL_TIME unsigned long data;
timestamp SQL_TIMESTAMP unsigned long data;

" The bit type

This type corresponds to the SQL_BIT type in ODBC. It stores the
binary values 0 and 1, or the value null.

If this data type is used with CREATE TABLE, a two-byte block is
reserved in the created file to differentiate between the null value and 0
or 1. If such a field is used in the definition of a key, the two bytes are
used in the key.

!!!! SQL statements used in C-ISAM B - 131

If the bit data type is used with DEFINE TABLE, only one byte is
reserved. The value 0 is no longer differentiated from the value null. In
DEFINE TABLE therefore this type of field can't be null.

The following table shows the values stored. The data in italic only
applies to CREATE TABLE.

Bit type field notnull_data Data value
0 1 0
1 1 1
Null 0 0

" The byte type

This type corresponds to the SQL_TINYINT type in ODBC. It stores
values from 0 to 255, or null.

If this data type is used with CREATE TABLE a two-byte block is
reserved (as with the bit type) to differentiate the value null from the
other values. If this type of field is used in the definition of a key, the
two bytes are used in the key.

If the data type is used with DEFINE TABLE, only one byte is
reserved. The value 0 therefore can't be differentiated from null. In
DEFINE TABLE this type of field can't be null.

The following table shows the values stored. The data in italic only
applies to CREATE TABLE.

byte type field notnull_data data value
0 1 0
1 1 1
... 1 ...
255 1 255
null 0 0

" The char type

This type corresponds to the SQL_CHAR type in ODBC. It can stock
from 1 to 32511 characters.

B - 132 Data Access !!!!

When this type of data is inserted in a field, all the non-significant
spaces at the end of the string are deleted and the corresponding bytes
in the file are set to '\0' (ASCII code 0). When data is read from these
fields, the string read is automatically completed with spaces (ASCII
code 32) to its maximum size. If an empty string is stored in a field of
type char, a single space is written to the field to distinguish it from
null.

char(10) type field data value
‘’ 0x32000000000000000000
‘ ‘ 0x32000000000000000000
‘A ‘ 0x41000000000000000000
‘AaBb’ 0x41614262000000000000
null 0x00000000000000000000

" The varchar type

This type corresponds to the SQL_VARCHAR type in ODBC. It's used
in practically the same way as the char type. It also stores from 1 to
32511 characters.

It differs from the char type in that when data is inserted into this type
of field, none of the non-significant spaces at the end of the string are
deleted but the corresponding bytes in the file are filled with the
character '\0'. When data is read from these fields, ODBC retrieves the
unmodified string. As for the char type, an empty string is stored as a
single space character to distinguish it from null.

varchar(10) type field data value
‘’ 0x32000000000000000000
‘ ‘ 0x32000000000000000000
‘A ‘ 0x41202020202000000000
‘AaBb’ 0x41614262000000000000
null 0x00000000000000000000

" The binary type

This type corresponds to the SQL_BINARY type in ODBC. It can store
from 1 to 32511 characters.

!!!! SQL statements used in C-ISAM B - 133

When this type of data is used with CREATE TABLE, an extra byte
(notnull_data) is used. This byte can be set at 0 or 1 to distinguish the
value null from an empty string. If a binary type field is used in the
definition of a key, the notnull_data byte is included with the data bytes
in the key.

No extra byte is added when the binary type is used with DEFINE
TABLE. Only the significant bytes are stored. The value 0 can't be
distinguished then from the value null. For this reason, this type of field
can't be null.

When data is inserted into this type of field, the corresponding bytes in
the file are completed with the '\0' character. When this type of field is
read, all the bytes are retrieved by ODBC.

The following table shows the stored values. The data in italics only
apply to CREATE TABLE.

binary(10) type field notnull_data data value
0x 1 0x00000000000000000000
0x00 1 0x00000000000000000000
0x1234 1 0x12340000000000000000
null 0 0x00000000000000000000

" The varbinary type

This type corresponds to the SQL_VARBINARY type in ODBC. It can
store from 1 to 32511 characters.

This type can only be used with the CREATE TABLE command. No
varbinary type fields can be used with DEFINE TABLE. Two extra
bytes are used with this data type. The bytes store the length of the
binary data plus one as a short integer. The value 0 corresponds to a
null binary and the value 1 to a binary of zero length.

Like the binary type, when data is inserted into this type of field, the
corresponding block in the file is completed with the character '\0'.
When this type of field is read, only the bytes with the binary length are
retrieved by ODBC. If a varbinary type of field is used in the
definition of a key, the size_data bytes aren't included with the data
bytes in the key.

B - 134 Data Access !!!!

varbinary(10) type field size_data data value
0x 0x0001 0x00000000000000000000
0x00 0x0002 0x00000000000000000000
0x1234 0x0003 0x12340000000000000000
null 0x0000 0x00000000000000000000

" The smallint type

This type corresponds to the SQL_SMALLINT type in ODBC. It stores
integers in the range -32767 to 32767 in 2 bytes. The value –32768 is
reserved for a null field.

smallint type field data value
-32767 -32767
0 0
30000 30000
null -32768

" The longint type

This type corresponds to the SQL_INTEGER type in ODBC. It stores
integer values in the range -134217727 to 134217727 in 4 bytes. The
value –134217728 is reserved for a null field.

longint type field data value
-32767 -32767
0 0
134217 134217
null -134217728

" The real type

This type corresponds to the SQL_REAL and SQL_FLOAT types in
ODBC. It stores floating point numbers in machine format in 4 bytes.

real type field data value
-25 (float)-25.0
0 (float)0.0
3.1415 (float)3.1415
null non-significant value

!!!! SQL statements used in C-ISAM B - 135

" The double type

This type corresponds to the SQL_DOUBLE type in ODBC. It stores
floating point numbers in machine format in 8 bytes.

double type field data value
-25 (double)-25.0
0 (double)0.0
3.1415 (double)3.1415
null non-significant value

" The decimal type

This type corresponds to the SQL_DECIMAL type in ODBC. It stores
fixed point numbers.

The decimal type must be followed by two parameters in brackets, "c1
decimal(n, m)", where n is the total number of digits and m the number
of decimals. If m isn't specified, a default value of 0 is used.

The C-ISAM functions stdecimal() and lddecimal() are used to
read/write fields of this type.

" The date type

This type corresponds to the SQL_DATE type in ODBC. It stores a
date as the number of days since the 1st January in the year 0 as a 4-byte
integer. To insert or test a date in SQL commands, use ODBC notation
({d ‘AAAA-MM-JJ’ }).

date type field data value
{ d ‘0000-01-01’ } 0
{ d ‘1997-02-17’ } 729438
null -134217728

" The time type

This type corresponds to the SQL_TIME type in ODBC. It stores the
time as the number of seconds in the day in a 4-byte integer. To insert
or test a time in SQL commands, use ODBC notation
({ t ‘hh :mm :ss’ }).

B - 136 Data Access !!!!

time type field data value
{ t ’00 :00 :00’ } 0
{ t ’13 :40 :10’ } 49210
null -134217728

" The timestamp type

This type corresponds to the SQL_TIMESTAMP type in ODBC. It
stores the time as the number of seconds from the 1st January 1970
(similar to the time() function in C). The maximum value corresponds
to the date 5 February 2036, 00.00 h. To insert or test a timestamp in
SQL commands, use ODBC notation ({ ts ‘AAAA-MM-JJ
hh :mm :ss’ }).

timestamp type field data value
{ ts ’1970-01-01 00 :00 :00’ } 0
{ ts ’1997-02-17 13 :40 :10’ } 856186810
null -134217728

!!!! Index I - 137

INDEX

A
Allowed,82
Arrayfields (Progress),87

B
BackOffice,2
binary,130, 132
bit,130
byte,130, 131

C
char,130, 131
C-ISAM,37

Create database,39
ISAM-PATH,39
sqltools,38
SysColumns,38
SysDefaults,38
SysIndexes,38
SysTables,38

Client/Server model,11
COLUMN DEFINITION,100
COMMENT,108
config.xxx,80
CONNECT DATABASE,110
CONSTRAINT DEFINITION,103, 104
Conversion tables,33
Create database,39
CREATE DATABASE,97
CREATE INDEX,106
CREATE SYNONYM,107
CREATE TABLE,98, 130

D
Data source,21
Database revamping,14
date,130, 135
DB Script,15
DB Show,15, 17
DB2,14
DBMAP.EXE,84

DBSCRIPT.EXE,85
DBSHOW.EXE,86
Debug,91
decimal,130, 135
DEFAULT,101
DEFINE TABLE,99, 130
DELETE,124
Denied,82
DISCONNECT DATABASE,111
double,130, 135
DROP DATABASE,109
DROP INDEX,112
DROP SYNONYM,114
DROP TABLE,113, 115

E
Embedded SQL,9
Environment,53, 60
Exporting data source environments,71

F
FILE IS,105
Files

.dat files,37, 38, 40, 41

.idx files,37, 38, 40, 41
C-ISAM,37

FROM,119

G
GROUP BY,121

H
HAVING,122

I
Importing a data source,59
Index (C-ISAM),42
Informix,14, 90
INSERT,125
Inter-table links,66

I - 138 Data Access !!!!

ISAM-PATH,39

J
Joins,53

L
Limits,27
longint,130, 134

N
NOT NULL,102

O
ODBC,9, 26
ODBC.DLL,10
Oracle,14, 90
ORDER BY,123
Ordres SQL/C-ISAM

COMMENT,108
CREATE SYNONYM,107

P
PARAM.XXX,87
Progress,14

R
RDBMS,12
real,130, 134
Revamping,53

S
Script (running a script from sqltools),48
Security,82
SELECT,116
SELECT CLAUSE,117
Sequential files,38
SET,128
smallint,130, 134
Special characters,33
SQL,12
SQL/C-ISAM clauses

DEFAULT,101
FROM,119

GROUP BY,121
HAVING,122
NOT NULL,102
ORDER BY,123
SELECT CLAUSE,117
SET,128
VALUES,126
WHERE,120

SQL/C-ISAM options
COLUMN DEFINITION,100
CONSTRAINT DEFINITION,104
FILE IS,105

SQL/C-ISAM statements
CONNECT DATABASE,110
CREATE DATABASE,97
CREATE INDEX,106
CREATE TABLE,98
DEFINE TABLE,99
DISCONNECT DATABASE,111
DROP DATABASE,109
DROP INDEX,112
DROP SYNONYM,114
DROP TABLE,113, 115
INSERT,125
UPDATE,127

SQL/C-ISAM subset
CONSTRAINT DEFINITION,103

SQL_BINARY,130, 132
SQL_BIT,130
SQL_CHAR,130, 131
SQL_DATE,130, 135
SQL_DECIMAL,130, 135
SQL_DOUBLE,130, 135
SQL_FLOAT,130, 134
SQL_INTEGER,130, 134
SQL_REAL,134
SQL_SMALLINT,130, 134
SQL_TIME,130, 135
SQL_TIMESTAMP,130, 136
SQL_TINYINT,130, 131
SQL_VARBINARY,130, 133
SQL_VARCHAR,130, 132
sqltools,38
Statements

DELETE,124
SELECT,116

Sybase,14, 90
SysColumns,38
SysDefaults,38
SysIndexes,38
SysTables,38

!!!! Index I - 139

T
Tables (C-ISAM),41
time,130, 135
timestamp,130, 136
Trace,90
Translator,26
TUNODBC.XXX,89
Type

binary,130, 132
bit,130
byte,130, 131
char,130, 131
date,130, 135
decimal,130, 135
double,130, 135
longint,130, 134
real,130, 134
smallint,130, 134
time,130, 135
timestamp,130, 136
varbinary,130, 133
varchar,130, 132

U
UPDATE,127

V
Validating environments,70
VALUES,126
varbinary,130, 133
varchar,130, 132
Virtual data source,31
Virtual databases,51
Virtual field,54, 61
Virtual ODBC driver,13, 14, 55
Virtual table,54
Virtual table,60

W
Warnings,73
WHERE,120
WOSA,10

	PART 1 PRESENTATION AND USE
	CHAPTER 1 - INTRODUCTION TO TUN SQL
	The ODBC mechanism
	The Client/Server model
	ODBC and the SQL Client/Server model
	Tun SQL

	CHAPTER 2 - CONFIGURATION AND USE IN WINDOWS
	Verifying the functioning of Tun SQL
	Creating a database
	Creating a data source
	Transferring the demonstration database
	Creating a virtual data source
	Character conversion tables

	CHAPTER 3 - C-ISAM
	Introduction to C-ISAM
	Using sqltools

	PART 2 DATABASE REVAMPING
	CHAPTER 4 - REVAMPING
	Virtual databases
	Revamping in Tun SQL

	CHAPTER 5 - TUN DB REVAMP GENERAL USE
	General options
	Importing data source environments
	Creating an environment
	Creating a virtual table
	Creating a field
	Assigning field filters
	Inter-table links
	Querying real and virtual databases
	Validating an environment
	Exporting data source environments
	Updating a virtual data source
	Creating a virtual data source
	Displaying warnings
	Local revamped data source management
	Field identification

	PART 3 APPENDICES
	APPENDIX A - REFERENCE
	APPENDIX B - SQL STATEMENTS USED IN C-ISAM
	Principle instructions
	SQL statement syntax
	Data types

	INDEX

